Page 328 - 《软件学报》2025年第7期
P. 328

黄靖 等: 基于特征融合动态图网络的多标签文本分类算法                                                     3249


                 中将进一步探索和优化动态图网络在文本分类中的应用, 提高动态图网络的自适应性, 优化模型在不平衡数据集
                 和带噪声标签数据中的表现, 构建适应性更强的多标签文本分类算法. 同时, 本文的研究也存在一定的局限性, 例
                 如当数据集当中标签的数量过多时            (例如  AmazonCat-3M  数据集包含数百万个标签), 每个样本可能只与其中的小
                 部分标签关联. 随着标签数量的增多, 计算复杂性也会增加, 这给模型的训练带来了巨大的困难.

                 References:
                  [1]  Minaee  S,  Kalchbrenner  N,  Cambria  E,  Nikzad  N,  Chenaghlu  M,  Gao  JF.  Deep  learning-based  text  classification:  A  comprehensive
                     review. ACM Computing Surveys (CSUR), 2021, 54(3): 62. [doi: 10.1145/3439726]
                  [2]  Tang  PJ,  Jiang  M,  Xia  B,  Pitera  JW,  Welser  J,  Chawla  NV.  Multi-label  patent  categorization  with  non-local  attention-based  graph
                     convolutional network. In: Proc. of the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 9024–9031. [doi: 10.1609/
                     aaai.v34i05.6435]
                  [3]  Jain H, Prabhu Y, Varma M. Extreme multi-label loss functions for recommendation, tagging, ranking & other missing label applications.
                     In: Proc. of the 22nd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016. 935–944. [doi:
                     10.1145/2939672.2939756]
                  [4]  Fiallos A, Jimenes K. Using reddit data for multi-label text classification of Twitter users interests. In: Proc. of the 6th Int’l Conf. on
                     eDemocracy & eGovernment (ICEDEG). Quito: IEEE, 2019. 324–327. [doi: 10.1109/ICEDEG.2019.8734365]
                  [5]  Wang YQ, Feng S, Wang DL, Yu G, Zhang YF. Multi-label Chinese microblog emotion classification via convolutional neural network.
                     In: Proc. of the 18th Asia-Pacific Web Conf.—Web Technologies and Applications. Suzhou: Springer, 2016. 567–580. [doi: 10.1007/978-
                     3-319-45814-4_46]
                  [6]  Vu  HT,  Nguyen  MT,  Nguyen  VC,  Tien  MT,  Nguyen,  VH.  Label  correlation  based  graph  convolutional  network  for  multi-label  text
                     classification. In: Proc. of the 2022 Int’l Joint Conf. on Neural Networks (IJCNN). Padua: IEEE, 2022. 1–8. [doi: 10.1109/IJCNN55064.
                     2022.9892542]
                  [7]  Liu J, Chang WC, Wu Y, Yang Y. Deep learning for extreme multi-label text classification. In: Proc. of the 40th Int’l ACM SIGIR Conf.
                     on Research and Development in Information Retrieval. Shinjuku: ACM, 2017. 115–124. [doi: 10.1145/3077136.308083]
                  [8]  Wei X, Huang JB, Zhao R, Yu H, Xu Z. Multi-label text classification model based on multi-level constraint augmentation and label
                     association  attention.  ACM  Trans.  on  Asian  and  Low-resource  Language  Information  Processing,  2024,  23(1):  14.  [doi:  10.1145/
                     3586008]
                  [9]  Luaces O, Díez J, Barranquero J, del Coz JJ, Bahamonde A. Binary relevance efficacy for multilabel classification. Progress in Artificial
                     Intelligence, 2012, 1(4): 303–313. [doi: 10.1007/s13748-012-0030-x]
                 [10]  Zhang  ML,  Zhou  ZH.  Multilabel  neural  networks  with  applications  to  functional  genomics  and  text  categorization.  IEEE  Trans.  on
                     Knowledge and Data Engineering, 2006, 18(10): 1338–1351. [doi: 10.1109/TKDE.2006.162]
                 [11]  Wu YJ, Li J, Wu J, Chang J. Siamese capsule networks with global and local features for text classification. Neurocomputing, 2020, 390:
                     88–98. [doi: 10.1016/j.neucom.2020.01.064]
                 [12]  Hu LM, Yang TC, Shi C, Ji HY, Li XL. Heterogeneous graph attention networks for semi-supervised short text classification. In: Proc. of
                     the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing
                     (EMNLP-IJCNLP). Hong Kong: ACL, 2019. 4821–4830. [doi: 10.18653/v1/D19-1488]
                 [13]  Du  XY,  Chen  Z,  Xiang  XG.  Explainable  tag-aware  recommendation  based  on  disentangled  graph  neural  network.  Ruan  Jian  Xue
                     Bao/Journal of Software, 2023, 34(12): 5670–5685 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6754.htm [doi:
                     10.13328/j.cnki.jos.006754]
                 [14]  Clare A, King RD. Knowledge discovery in multi-label phenotype data. In: Proc. of the 5th European Conf. on Principles of Data Mining
                     and Knowledge Discovery. Freiburg: Springer, 2001. 42–53. [doi: 10.1007/3-540-44794-6_4]
                 [15]  Elisseeff  A,  Weston  J.  A  kernel  method  for  multi-labelled  classification.  In:  Proc.  of  the  14th  Int’l  Conf.  on  Neural  Information
                     Processing Systems. Vancouver: MIT Press, 2001. 681–687.
                 [16]  Zhang ML, Zhou ZH. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 2007, 40(7): 2038–2048. [doi: 10.
                     1016/j.patcog.2006.12.019]
                 [17]  Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: Proc. of the 2017 Int’l Conf. on Engineering
   323   324   325   326   327   328   329   330   331   332   333