Page 328 - 《软件学报》2025年第7期
P. 328
黄靖 等: 基于特征融合动态图网络的多标签文本分类算法 3249
中将进一步探索和优化动态图网络在文本分类中的应用, 提高动态图网络的自适应性, 优化模型在不平衡数据集
和带噪声标签数据中的表现, 构建适应性更强的多标签文本分类算法. 同时, 本文的研究也存在一定的局限性, 例
如当数据集当中标签的数量过多时 (例如 AmazonCat-3M 数据集包含数百万个标签), 每个样本可能只与其中的小
部分标签关联. 随着标签数量的增多, 计算复杂性也会增加, 这给模型的训练带来了巨大的困难.
References:
[1] Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu M, Gao JF. Deep learning-based text classification: A comprehensive
review. ACM Computing Surveys (CSUR), 2021, 54(3): 62. [doi: 10.1145/3439726]
[2] Tang PJ, Jiang M, Xia B, Pitera JW, Welser J, Chawla NV. Multi-label patent categorization with non-local attention-based graph
convolutional network. In: Proc. of the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 9024–9031. [doi: 10.1609/
aaai.v34i05.6435]
[3] Jain H, Prabhu Y, Varma M. Extreme multi-label loss functions for recommendation, tagging, ranking & other missing label applications.
In: Proc. of the 22nd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016. 935–944. [doi:
10.1145/2939672.2939756]
[4] Fiallos A, Jimenes K. Using reddit data for multi-label text classification of Twitter users interests. In: Proc. of the 6th Int’l Conf. on
eDemocracy & eGovernment (ICEDEG). Quito: IEEE, 2019. 324–327. [doi: 10.1109/ICEDEG.2019.8734365]
[5] Wang YQ, Feng S, Wang DL, Yu G, Zhang YF. Multi-label Chinese microblog emotion classification via convolutional neural network.
In: Proc. of the 18th Asia-Pacific Web Conf.—Web Technologies and Applications. Suzhou: Springer, 2016. 567–580. [doi: 10.1007/978-
3-319-45814-4_46]
[6] Vu HT, Nguyen MT, Nguyen VC, Tien MT, Nguyen, VH. Label correlation based graph convolutional network for multi-label text
classification. In: Proc. of the 2022 Int’l Joint Conf. on Neural Networks (IJCNN). Padua: IEEE, 2022. 1–8. [doi: 10.1109/IJCNN55064.
2022.9892542]
[7] Liu J, Chang WC, Wu Y, Yang Y. Deep learning for extreme multi-label text classification. In: Proc. of the 40th Int’l ACM SIGIR Conf.
on Research and Development in Information Retrieval. Shinjuku: ACM, 2017. 115–124. [doi: 10.1145/3077136.308083]
[8] Wei X, Huang JB, Zhao R, Yu H, Xu Z. Multi-label text classification model based on multi-level constraint augmentation and label
association attention. ACM Trans. on Asian and Low-resource Language Information Processing, 2024, 23(1): 14. [doi: 10.1145/
3586008]
[9] Luaces O, Díez J, Barranquero J, del Coz JJ, Bahamonde A. Binary relevance efficacy for multilabel classification. Progress in Artificial
Intelligence, 2012, 1(4): 303–313. [doi: 10.1007/s13748-012-0030-x]
[10] Zhang ML, Zhou ZH. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. on
Knowledge and Data Engineering, 2006, 18(10): 1338–1351. [doi: 10.1109/TKDE.2006.162]
[11] Wu YJ, Li J, Wu J, Chang J. Siamese capsule networks with global and local features for text classification. Neurocomputing, 2020, 390:
88–98. [doi: 10.1016/j.neucom.2020.01.064]
[12] Hu LM, Yang TC, Shi C, Ji HY, Li XL. Heterogeneous graph attention networks for semi-supervised short text classification. In: Proc. of
the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing
(EMNLP-IJCNLP). Hong Kong: ACL, 2019. 4821–4830. [doi: 10.18653/v1/D19-1488]
[13] Du XY, Chen Z, Xiang XG. Explainable tag-aware recommendation based on disentangled graph neural network. Ruan Jian Xue
Bao/Journal of Software, 2023, 34(12): 5670–5685 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6754.htm [doi:
10.13328/j.cnki.jos.006754]
[14] Clare A, King RD. Knowledge discovery in multi-label phenotype data. In: Proc. of the 5th European Conf. on Principles of Data Mining
and Knowledge Discovery. Freiburg: Springer, 2001. 42–53. [doi: 10.1007/3-540-44794-6_4]
[15] Elisseeff A, Weston J. A kernel method for multi-labelled classification. In: Proc. of the 14th Int’l Conf. on Neural Information
Processing Systems. Vancouver: MIT Press, 2001. 681–687.
[16] Zhang ML, Zhou ZH. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 2007, 40(7): 2038–2048. [doi: 10.
1016/j.patcog.2006.12.019]
[17] Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: Proc. of the 2017 Int’l Conf. on Engineering

