Page 186 - 《软件学报》2025年第7期
P. 186

赵冬冬 等: 结合特征生成与重放的可扩展安全虹膜识别                                                      3107


                 [26]  Abdellatef E, Soliman RF, Omran EM, Ismail NA, Elrahman SESA, Ismail KN, Rihan M, Amin M, Eisa AA, El-Samie FEA. Cancelable
                     face and iris recognition system based on deep learning. Optical and Quantum Electronics, 2022, 54(11): 702. [doi: 10.1007/s11082-022-
                     03770-0]
                 [27]  Kim  J,  Jung  YG,  Teoh  ABJ.  Multimodal  biometric  template  protection  based  on  a  cancelable  SoftmaxOut  fusion  network.  Applied
                     Sciences, 2022, 12(4): 2023. [doi: 10.3390/app12042023]
                 [28]  Pandey RK, Zhou YB, Kota BU, Govindaraju V. Deep secure encoding for face template protection. In: Proc. of the 2016 IEEE Conf. on
                     Computer Vision and Pattern Recognition Workshops. Las Vegas: IEEE, 2016. 77–83. [doi: 10.1109/CVPRW.2016.17]
                 [29]  Chen LY, Zhao GH, Zhou JW, Ho ATS, Cheng LM. Face template protection using deep LDPC codes learning. IET Biometrics, 2019,
                     8(3): 190–197. [doi: 10.1049/iet-bmt.2018.5156]
                 [30]  Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution. In: Proc. of the 14th European Conf.
                     Amsterdam: Springer, 2016. 694–711. [doi: 10.1007/978-3-319-46475-6_43]
                 [31]  Zhao DD, Liao HC, Liao SS, Li HH, Xiang JW. Cancelable iris biometrics based on transformation network. In: Proc. of the 23rd Int’l
                     Conf. on Software Quality, Reliability, and Security. Chiang Mai: IEEE, 2023. 507–516. [doi: 10.1109/QRS60937.2023.00056]
                 [32]  Zhao DD, Cheng WT, Zhou J, Wang HM, Li HH. Cancellable iris recognition scheme based on inversion fusion and local ranking. In:
                     Proc. of the 30th Int’l Conf. on Neural Information Processing. Changsha: Springer, 2023. 340–356. [doi: 10.1007/978-981-99-8067-
                     3_26]
                 [33]  Liu XL, Wu CS, Menta M, Herranz L, Raducanu B, Bagdanov AD, Jui S, van de Weijer J. Generative feature replay for class-incremental
                     learning. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020. 915–924.
                     [doi: 10.1109/CVPRW50498.2020.00121]
                 [34]  CASIA. CASIA iris image database. 2016. http://biometrics.idealtest.org/
                 [35]  Othman  N,  Dorizzi  B,  Garcia-Salicetti  S.  OSIRIS:  An  open  source  iris  recognition  software.  Pattern  Recognition  Letters,  2016,  82:
                     124–131. [doi: 10.1016/j.patrec.2015.09.002]
                 [36]  Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Proc. of the 18th Int’l Conf.
                     Munich: Springer, 2015. 234–241. [doi: 10.1007/978-3-319-24574-4_28]
                 [37]  Simonyan  K,  Zisserman  A.  Very  deep  convolutional  networks  for  large-scale  image  recognition.  In:  Proc.  of  the  3rd  Int’l  Conf.  on
                     Learning Representations. 2015. 1–14.
                 [38]  Gangwar A, Joshi A. DeepIrisNet: Deep iris representation with applications in iris recognition and cross-sensor iris recognition. In: Proc.
                     of the 2016 IEEE Int’l Conf. on Image Processing. Phoenix: IEEE, 2016. 2301–2305. [doi: 10.1109/ICIP.2016.7532769]
                 [39]  Chaudhry A, Dokania PK, Ajanthan T, Torr PHS. Riemannian walk for incremental learning: Understanding forgetting and intransigence.
                     In: Proc. of the 15th European Conf. on Computer Vision. Munich: Springer, 2018. 556–572. [doi: 10.1007/978-3-030-01252-6_33]
                 [40]  Li ZZ, Hoiem D. Learning without forgetting. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935–2947. [doi:
                     10.1109/TPAMI.2017.2773081]
                 [41]  Rebuffi SA, Kolesnikov A, Sperl G, Lampert CH. iCaRL: Incremental classifier and representation learning. In: Proc. of the 2017 IEEE
                     Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5533–5542. [doi: 10.1109/CVPR.2017.587]
                 [42]  Kirkpatrick  J,  Pascanu  R,  Rabinowitz  N,  Veness  J,  Desjardins  G,  Rusu  AA,  Milan  K,  Quan  J,  Ramalho  T,  Grabska-Barwinska  A,
                     Hassabis D, Clopath C, Kumaran D, Hadsell R. Overcoming catastrophic forgetting in neural networks. Proc. of the National Academy of
                     Sciences of the United States of America, 2017, 114(13): 3521–3526. [doi: 10.1073/pnas.1611835114]
                 [43]  Douillard A, Cord M, Ollion C, Robert T, Valle E. PODNet: Pooled outputs distillation for small-tasks incremental learning. In: Proc. of
                     the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 86–102. [doi: 10.1007/978-3-030-58565-5_6]
                 [44]  Zhao BW, Xiao X, Gan GJ, Zhang B, Xia ST. Maintaining discrimination and fairness in class incremental learning. In: Proc. of the 2020
                     IEEE/CVF  Conf.  on  Computer  Vision  and  Pattern  Recognition.  Seattle:  IEEE,  2023.  13205–13214.  [doi:  10.1109/CVPR42600.2020.
                     01322]
                 [45]  Yan SP, Xie JW, He XM. DER: Dynamically expandable representation for class incremental learning. In: Proc. of the 2021 IEEE/CVF
                     Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 3013–3022. [doi: 10.1109/CVPR46437.2021.00303]
                 [46]  Wang FY, Zhou DW, Ye HJ, Zhan DC. FOSTER: Feature boosting and compression for class-incremental learning. In: Proc. of the 2022
                     European Conf. on Computer Vision. Tel Aviv: Springer, 2022. 398–414. [doi: 10.1007/978-3-031-19806-9_23]
                 [47]  Petit G, Popescu A, Schindler H, Picard D, Delezoide B. FeTrIL: Feature translation for exemplar-free class-incremental learning. In:
                     Proc.  of  the  2023  IEEE/CVF  Winter  Conf.  on  Applications  of  Computer  Vision.  Waikoloa:  IEEE,  2023.  3900–3909.  [doi: 10.1109/
                     WACV56688.2023.00390]
                 [48]  Zhou DW, Wang FY, Ye HJ, Zhan DC. PyCIL: A Python toolbox for class-incremental learning. Science China Information Sciences,
   181   182   183   184   185   186   187   188   189   190   191