Page 186 - 《软件学报》2025年第7期
P. 186
赵冬冬 等: 结合特征生成与重放的可扩展安全虹膜识别 3107
[26] Abdellatef E, Soliman RF, Omran EM, Ismail NA, Elrahman SESA, Ismail KN, Rihan M, Amin M, Eisa AA, El-Samie FEA. Cancelable
face and iris recognition system based on deep learning. Optical and Quantum Electronics, 2022, 54(11): 702. [doi: 10.1007/s11082-022-
03770-0]
[27] Kim J, Jung YG, Teoh ABJ. Multimodal biometric template protection based on a cancelable SoftmaxOut fusion network. Applied
Sciences, 2022, 12(4): 2023. [doi: 10.3390/app12042023]
[28] Pandey RK, Zhou YB, Kota BU, Govindaraju V. Deep secure encoding for face template protection. In: Proc. of the 2016 IEEE Conf. on
Computer Vision and Pattern Recognition Workshops. Las Vegas: IEEE, 2016. 77–83. [doi: 10.1109/CVPRW.2016.17]
[29] Chen LY, Zhao GH, Zhou JW, Ho ATS, Cheng LM. Face template protection using deep LDPC codes learning. IET Biometrics, 2019,
8(3): 190–197. [doi: 10.1049/iet-bmt.2018.5156]
[30] Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution. In: Proc. of the 14th European Conf.
Amsterdam: Springer, 2016. 694–711. [doi: 10.1007/978-3-319-46475-6_43]
[31] Zhao DD, Liao HC, Liao SS, Li HH, Xiang JW. Cancelable iris biometrics based on transformation network. In: Proc. of the 23rd Int’l
Conf. on Software Quality, Reliability, and Security. Chiang Mai: IEEE, 2023. 507–516. [doi: 10.1109/QRS60937.2023.00056]
[32] Zhao DD, Cheng WT, Zhou J, Wang HM, Li HH. Cancellable iris recognition scheme based on inversion fusion and local ranking. In:
Proc. of the 30th Int’l Conf. on Neural Information Processing. Changsha: Springer, 2023. 340–356. [doi: 10.1007/978-981-99-8067-
3_26]
[33] Liu XL, Wu CS, Menta M, Herranz L, Raducanu B, Bagdanov AD, Jui S, van de Weijer J. Generative feature replay for class-incremental
learning. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020. 915–924.
[doi: 10.1109/CVPRW50498.2020.00121]
[34] CASIA. CASIA iris image database. 2016. http://biometrics.idealtest.org/
[35] Othman N, Dorizzi B, Garcia-Salicetti S. OSIRIS: An open source iris recognition software. Pattern Recognition Letters, 2016, 82:
124–131. [doi: 10.1016/j.patrec.2015.09.002]
[36] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Proc. of the 18th Int’l Conf.
Munich: Springer, 2015. 234–241. [doi: 10.1007/978-3-319-24574-4_28]
[37] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proc. of the 3rd Int’l Conf. on
Learning Representations. 2015. 1–14.
[38] Gangwar A, Joshi A. DeepIrisNet: Deep iris representation with applications in iris recognition and cross-sensor iris recognition. In: Proc.
of the 2016 IEEE Int’l Conf. on Image Processing. Phoenix: IEEE, 2016. 2301–2305. [doi: 10.1109/ICIP.2016.7532769]
[39] Chaudhry A, Dokania PK, Ajanthan T, Torr PHS. Riemannian walk for incremental learning: Understanding forgetting and intransigence.
In: Proc. of the 15th European Conf. on Computer Vision. Munich: Springer, 2018. 556–572. [doi: 10.1007/978-3-030-01252-6_33]
[40] Li ZZ, Hoiem D. Learning without forgetting. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935–2947. [doi:
10.1109/TPAMI.2017.2773081]
[41] Rebuffi SA, Kolesnikov A, Sperl G, Lampert CH. iCaRL: Incremental classifier and representation learning. In: Proc. of the 2017 IEEE
Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5533–5542. [doi: 10.1109/CVPR.2017.587]
[42] Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska A,
Hassabis D, Clopath C, Kumaran D, Hadsell R. Overcoming catastrophic forgetting in neural networks. Proc. of the National Academy of
Sciences of the United States of America, 2017, 114(13): 3521–3526. [doi: 10.1073/pnas.1611835114]
[43] Douillard A, Cord M, Ollion C, Robert T, Valle E. PODNet: Pooled outputs distillation for small-tasks incremental learning. In: Proc. of
the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 86–102. [doi: 10.1007/978-3-030-58565-5_6]
[44] Zhao BW, Xiao X, Gan GJ, Zhang B, Xia ST. Maintaining discrimination and fairness in class incremental learning. In: Proc. of the 2020
IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2023. 13205–13214. [doi: 10.1109/CVPR42600.2020.
01322]
[45] Yan SP, Xie JW, He XM. DER: Dynamically expandable representation for class incremental learning. In: Proc. of the 2021 IEEE/CVF
Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 3013–3022. [doi: 10.1109/CVPR46437.2021.00303]
[46] Wang FY, Zhou DW, Ye HJ, Zhan DC. FOSTER: Feature boosting and compression for class-incremental learning. In: Proc. of the 2022
European Conf. on Computer Vision. Tel Aviv: Springer, 2022. 398–414. [doi: 10.1007/978-3-031-19806-9_23]
[47] Petit G, Popescu A, Schindler H, Picard D, Delezoide B. FeTrIL: Feature translation for exemplar-free class-incremental learning. In:
Proc. of the 2023 IEEE/CVF Winter Conf. on Applications of Computer Vision. Waikoloa: IEEE, 2023. 3900–3909. [doi: 10.1109/
WACV56688.2023.00390]
[48] Zhou DW, Wang FY, Ye HJ, Zhan DC. PyCIL: A Python toolbox for class-incremental learning. Science China Information Sciences,

