Page 185 - 《软件学报》2025年第7期
P. 185

3106                                                       软件学报  2025  年第  36  卷第  7  期


                 References:
                  [1]  Song JW, Cheng DF, Wang WF. Biometrics and Standardization. Beijing: China Electronics Standardization Institute, 2023. 42–53 (in
                     Chinese).
                  [2]  Al-Raisi  AN,  Al-Khouri  AM.  Iris  recognition  and  the  challenge  of  homeland  and  border  control  security  in  UAE.  Telematics  and
                     Informatics, 2008, 25(2): 117–132. [doi: 10.1016/j.tele.2006.06.005]
                  [3]  ISO/IEC.  ISO/IEC  24745:  2011  Information  technology—Security  techniques—Biometric  information  protection.  Geneva:  Int’l
                     Organization for Standardization, 2011.
                  [4]  Hermans J, Mennink B, Peeters R. When a bloom filter is a doom filter: Security assessment of a novel iris biometric template protection
                     system. In: Proc. of the 2014 Int’l Conf. of the Biometrics Special Interest Group. Darmstadt: IEEE, 2014. 1–6.
                  [5]  Ghammam L, Karabina K, Lacharme P, Thiry-Atighehchi K. A cryptanalysis of two cancelable biometric schemes based on index-of-
                     max hashing. IEEE Trans. on Information Forensics and Security, 2020, 15: 2869–2880. [doi: 10.1109/TIFS.2020.2977533]
                  [6]  Dong XB, Jin Z, Jin ATB. A genetic algorithm enabled similarity-based attack on cancellable biometrics. In: Proc. of the 10th IEEE Int’l
                     Conf. on Biometrics Theory, Applications and Systems. Tampa: IEEE, 2019. 1–8. [doi: 10.1109/BTAS46853.2019.9185997]
                  [7]  Ouda  O,  Chaoui  S,  Tsumura  N.  Security  evaluation  of  negative  iris  recognition.  IEICE  Trans.  on  Information  and  Systems,  2020,
                     E103.D(5): 1144–1152. [doi: 10.1587/transinf.2019EDP7276]
                  [8]  Ignatenko T, Willems FMJ. Information leakage in fuzzy commitment schemes. IEEE Trans. on Information Forensics and Security,
                     2010, 5(2): 337–348. [doi: 10.1109/TIFS.2010.2046984]
                  [9]  Simoens K, Tuyls P, Preneel B. Privacy weaknesses in biometric sketches. In: Proc. of the 30th IEEE Symp. on Security and Privacy.
                     Oakland: IEEE, 2009. 188–203. [doi: 10.1109/SP.2009.24]
                 [10]  Rathgeb  C,  Uhl  A.  Statistical  attack  against  iris-biometric  fuzzy  commitment  schemes.  In:  Proc.  of  the  2011  CVPR  WORKSHOPS.
                     Colorado Springs: IEEE, 2021. 23–30. [doi: 10.1109/CVPRW.2011.5981720]
                 [11]  Blanton  M,  Aliasgari  M.  Analysis  of  reusability  of  secure  sketches  and  fuzzy  extractors.  IEEE  Trans.  on  Information  Forensics  and
                     Security, 2013, 8(9): 1433–1445. [doi: 10.1109/TIFS.2013.2272786]
                 [12]  Cavoukian A, Stoianov A. Biometric encryption. Biometric Technology Today, 2007, 15(3): 11. [doi: 10.1016/S0969-4765(07)70084-X]
                 [13]  Rathgeb C, Uhl A. A survey on biometric cryptosystems and cancelable biometrics. EURASIP Journal on Information Security, 2011,
                     2011(1): 3. [doi: 10.1186/1687-417X-2011-3]
                 [14]  Juels A, Sudan M. A fuzzy vault scheme. Designs, Codes and Cryptography, 2006, 38(2): 237–257. [doi: 10.1007/s10623-005-6343-z]
                 [15]  Juels A, Wattenberg M. A fuzzy commitment scheme. In: Proc. of the 6th ACM Conf. on Computer and Communications Security.
                     Singapore: ACM, 1999. 28–36. [doi: 10.1145/319709.319714]
                 [16]  Dodis Y, Reyzin L, Smith A. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Proc. of the 2004
                     Int’l Conf. on the Theory and Applications of Cryptographic Techniques. Interlaken: Springer, 2004. 523–540. [doi: 10.1007/978-3-540-
                     24676-3_31]
                 [17]  Chang EC, Shen R, Teo FW. Finding the original point set hidden among chaff. In: Proc. of the 2006 ACM Symp. on Information,
                     Computer and Communications Security. Taipei: ACM, 2006. 182–188. [doi: 10.1145/1128817.1128845]
                 [18]  Poon HT, Miri A. A collusion attack on the fuzzy vault scheme. The ISC Int’l Journal of Information Security, 2009, 1(1): 27–34. [doi: 10.
                     22042/isecure.2015.1.1.4]
                 [19]  Scheirer WJ, Boult TE. Cracking fuzzy vaults and biometric encryption. In: Proc. of the 2007 Biometrics Symp. Baltimore: IEEE, 2007.
                     1–6. [doi: 10.1109/BCC.2007.4430534]
                 [20]  Kelkboom EJC, Breebaart J, Kevenaar TAM, Buhan I, Veldhuis RNJ. Preventing the decodability attack based cross-matching in a fuzzy
                     commitment scheme. IEEE Trans. on Information Forensics and Security, 2011, 6(1): 107–121. [doi: 10.1109/TIFS.2010.2091637]
                 [21]  Rathgeb C, Breitinger F, Busch C. Alignment-free cancelable iris biometric templates based on adaptive bloom filters. In: Proc. of the
                     2013 Int’l Conf. on Biometrics. Madrid: IEEE, 2013. 1–8. [doi: 10.1109/ICB.2013.6612976]
                 [22]  Jin Z, Hwang JY, Lai YL, Kim S, Teoh ABJ. Ranking-based locality sensitive hashing-enabled cancelable biometrics: Index-of-max
                     hashing. IEEE Trans. on Information Forensics and Security, 2018, 13(2): 393–407. [doi: 10.1109/TIFS.2017.2753172]
                 [23]  Sadhya D, Raman B. Generation of cancelable iris templates via randomized bit sampling. IEEE Trans. on Information Forensics and
                     Security, 2019, 14(11): 2972–2986. [doi: 10.1109/TIFS.2019.2907014]
                 [24]  Lai YL, Jin Z, Teoh ABJ, Goi BM, Yap WS, Chai TY, Rathgeb C. Cancellable iris template generation based on indexing-first-one
                     hashing. Pattern Recognition, 2017, 64: 105–117. [doi: 10.1016/j.patcog.2016.10.035]
                 [25]  Zhao DD, Luo WJ, Liu R, Yue LH. Negative iris recognition. IEEE Trans. on Dependable and Secure Computing, 2018, 15(1): 112–125.
                     [doi: 10.1109/TDSC.2015.2507133]
   180   181   182   183   184   185   186   187   188   189   190