Page 499 - 《软件学报》2025年第5期
P. 499

朱鹏程 等: 面向分布式超导量子计算架构的量子线路映射                                                     2399


                     021-03170-5]
                 [25]  Wehner S, Elkouss D, Hanson R. Quantum Internet: A vision for the road ahead. Science, 2018, 362(6412): eaam9288. [doi: 10.1126/
                     science.aam9288]
                 [26]  Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein SL. Advances in quantum teleportation. Nature Photonics, 2015, 9(10):
                     641–652. [doi: 10.1038/nphoton.2015.154]
                 [27]  LaRacuente  N,  Smith  KN,  Imany  P,  Silverman  KL,  Chong  FT.  Modeling  short-range  microwave  networks  to  scale  superconducting
                     quantum computation. arXiv:2201.08825, 2023.
                 [28]  Chow JM. Quantum intranet. IET Quantum Communication, 2021, 2(1): 26–27. [doi: 10.1049/qtc2.12002]
                 [29]  Bardin J. Beyond-classical computing using superconducting quantum processors. In: Proc. of the 2022 IEEE Int’l Solid-state Circuits
                     Conf. San Francisco: IEEE, 2022. 422–424. [doi: 10.1109/ISSCC42614.2022.9731635]
                 [30]  Zulehner A, Paler A, Wille R. An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans. on
                     Computer-aided Design of Integrated Circuits and Systems, 2019, 38(7): 1226–1236. [doi: 10.1109/TCAD.2018.2846658]
                 [31]  Li  GS,  Ding  YF,  Xie  Y.  Tackling  the  qubit  mapping  problem  for  NISQ-era  quantum  devices.  In:  Proc.  of  the  24th  Int’l  Conf.  on
                     Architectural Support for Programming Languages and Operating Systems. Providence: ACM, 2019. 1001–1014. [doi: 10.1145/3297858.
                     3304023]
                 [32]  Nishio S, Pan YL, Satoh T, Amano H, van Meter R. Extracting success from IBM’s 20-qubit machines using error-aware compilation.
                     ACM Journal on Emerging Technologies in Computing Systems, 2020, 16(3): 32. [doi: 10.1145/3386162]
                 [33]  Niu SY, Suau A, Staffelbach G, Todri-Sanial A. A hardware-aware heuristic for the qubit mapping problem in the NISQ era. IEEE Trans.
                     on Quantum Engineering, 2020, 1: 3101614. [doi: 10.1109/TQE.2020.3026544]
                 [34]  Zhu  PC,  Cheng  XY,  Guan  ZJ.  An  exact  qubit  allocation  approach  for  NISQ  architectures.  Quantum  Information  Processing,  2020,
                     19(11): 391. [doi: 10.1007/s11128-020-02901-4]
                 [35]  Zhou XZ, Feng Y, Li SJ. A Monte Carlo tree search framework for quantum circuit transformation. In: Proc. of the 39th Int’l Conf. on
                     Computer-aided Design. San Diego: ACM, 2020. 138. [doi: 10.1145/3400302.3415621]
                 [36]  Li SJ, Zhou XZ, Feng Y. Qubit mapping based on subgraph isomorphism and filtered depth-limited search. IEEE Trans. on Computers,
                     2021, 70(11): 1777–1788. [doi: 10.1109/TC.2020.3023247]
                 [37]  Zhu  PC,  Guan  ZJ,  Cheng  XY.  A  dynamic  look-ahead  heuristic  for  the  qubit  mapping  problem  of  NISQ  computers.  IEEE  Trans.  on
                     Computer-aided Design of Integrated Circuits and Systems, 2020, 39(12): 4721–4735. [doi: 10.1109/TCAD.2020.2970594]
                 [38]  Zhu  PC,  Feng  SG,  Guan  ZJ.  An  iterated  local  search  methodology  for  the  qubit  mapping  problem.  IEEE  Trans.  on  Computer-aided
                     Design of Integrated Circuits and Systems, 2022, 41(8): 2587–2597. [doi: 10.1109/TCAD.2021.3112143]
                 [39]  Dou XL, Liu L, Chen YT. An investigation into quantum program mapping on superconducting quantum computers. Journal of Computer
                     Research and Development, 2021, 58(9): 1856–1874 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2021.20210314]
                 [40]  Zhou  XZ,  Feng  Y,  Li  SJ.  Supervised  learning  enhanced  quantum  circuit  transformation.  IEEE  Trans.  on  Computer-aided  Design  of
                     Integrated Circuits and Systems, 2023, 42(3): 437–447. [doi: 10.1109/TCAD.2022.3179223]
                 [41]  Pozzi MG, Herbert SJ, Sengupta A, Mullins RD. Using reinforcement learning to perform qubit routing in quantum compilers. ACM
                     Trans. on Quantum Computing, 2022, 3(2): 10. [doi: 10.1145/3520434]
                 [42]  Wille R, van Meter R, Naveh Y. IBM’s Qiskit tool chain: Working with and developing for real quantum computers. In: Proc. of the 2019
                     Design, Automation & Test in Europe Conf. & Exhibition. Florence: IEEE, 2019. 1234–1240. [doi: 10.23919/DATE.2019.8715261]
                 [43]  Boykin PO, Mor T, Pulver M, Roychowdhury V, Vatan F. A new universal and fault-tolerant quantum basis. Information Processing
                     Letters, 2000, 75(3): 101–107. [doi: 10.1016/S0020-0190(00)00084-3]
                 [44]  Chou KS, Blumoff JZ, Wang C, Reinhold PC, Axline CJ, Gao YY, Frunzio L, Devoret MH, Jiang L, Schoelkopf RJ. Deterministic
                     teleportation of a quantum gate between two logical qubits. Nature, 2018, 561(7723): 368–373. [doi: 10.1038/s41586-018-0470-y]
                 [45]  Delahaye D, Chaimatanan S, Mongeau M. Simulated annealing: From basics to applications. In: Gendreau M, Potvin JY, eds. Handbook
                     of Metaheuristics. Cham: Springer, 2019. 1–35. [doi: 10.1007/978-3-319-91086-4_1]

                 附中文参考文献:
                 [39]  窦星磊, 刘磊, 陈岳涛. 面向超导量子计算机的程序映射技术研究. 计算机研究与发展, 2021, 58(9): 1856–1874. [doi: 10.7544/
                     issn1000-1239.2021.20210314]
   494   495   496   497   498   499   500   501   502