Page 498 - 《软件学报》2025年第5期
P. 498
2398 软件学报 2025 年第 36 卷第 5 期
Letters, 2021, 127(18): 180501. [doi: 10.1103/PhysRevLett.127.180501]
[4] Zhu QL, Cao SR, Chen FS, et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin,
2022, 67(3): 240–245. [doi: 10.1016/j.scib.2021.10.017]
[5] Huang HY, Broughton M, Cotler J, Chen ST, Li J, Mohseni M, Neven H, Babbush R, Kueng R, Preskill J, Mcclean JR. Quantum
advantage in learning from experiments. Science, 2022, 376(6598): 1182–1186. [doi: 10.1126/science.abn7293]
[6] Brink M, Chow JM, Hertzberg J, Magesan E, Rosenblatt S. Device challenges for near term superconducting quantum processors:
Frequency collisions. In: Proc. of the 2018 IEEE Int’l Electron Devices Meeting. San Francisco: IEEE, 2018. 611–613. [doi: 10.1109/
IEDM.2018.8614500]
[7] Cuomo D, Caleffi M, Cacciapuoti AS. Towards a distributed quantum computing ecosystem. IET Quantum Communication, 2020, 1(1):
3–8. [doi: 10.1049/iet-qtc.2020.0002]
[8] Rodrigo S, Abadal S, Alarcón E, Almudever CG. Will quantum computers scale without inter-chip comms? A structured design
exploration to the monolithic vs distributed architectures quest. In: Proc. of the 2020 Conf. on Design of Circuits and Integrated Systems.
Segovia: IEEE, 2020. 1–6. [doi: 10.1109/DCIS51330.2020.9268630]
[9] Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse JC, Gasparinetti S, Blais A, Wallraff
A. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature, 2018, 558(7709): 264–267. [doi: 10.
1038/s41586-018-0195-y]
[10] Magnard P, Storz S, Kurpiers P, Schär J, Marxer F, Lütolf J, Walter T, Besse JC, Gabureac M, Reuer K, Akin A, Royer B, Blais A,
Wallraff A. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Physical Review
Letters, 2020, 125(26): 260502. [doi: 10.1103/PhysRevLett.125.260502]
[11] Leung N, Lu Y, Chakram S, Naik RK, Earnest N, Ma R, Jacobs K, Cleland AN, Schuster DI. Deterministic bidirectional communication
and remote entanglement generation between superconducting qubits. npj Quantum Information, 2019, 5(1): 18. [doi: 10.1038/s41534-
019-0128-0]
[12] Zhong YP, Chang HS, Bienfait A, Dumur É, Chou MH, Conner CR, Grebel J, Povey RG, Yan HX, Schuster DI, Cleland AN.
Deterministic multi-qubit entanglement in a quantum network. Nature, 2021, 590(7847): 571–575. [doi: 10.1038/s41586-021-03288-7]
[13] Yan HX, Zhong YP, Chang HS, Bienfait A, Chou MH, Conner CR, Dumur É, Grebel J, Povey RG, Cleland AN. Entanglement
purification and protection in a superconducting quantum network. Physical Review Letters, 2022, 128(8): 080504. [doi: 10.1103/
PhysRevLett.128.080504]
[14] Gold A, Paquette JP, Stockklauser A, Reagor MJ, Alam MS, Bestwick A, Didier N, Nersisyan A, Oruc F, Razavi A, Scharmann B, Sete
EA, Sur B, Venturelli D, Winkleblack CJ, Wudarski F, Harburn M, Rigetti C. Entanglement across separate silicon dies in a modular
superconducting qubit device. npj Quantum Information, 2021, 7(1): 142. [doi: 10.1038/s41534-021-00484-1]
[15] Conner CR, Bienfait A, Chang HS, Chou MH, Dumur É, Grebel J, Peairs GA, Povey RG, Yan H, Zhong YP, Cleland AN.
Superconducting qubits in a flip-chip architecture. Applied Physics Letters, 2021, 118(23): 232602. [doi: 10.1063/5.0050173]
[16] Kosen S, Li HX, Rommel M, et al. Building blocks of a flip-chip integrated superconducting quantum processor. Quantum Science and
Technology, 2022, 7(3): 035018. [doi: 10.1088/2058-9565/ac734b]
[17] Siraichi MY, Santos VFD, Collange C, Pereira FMQ. Qubit allocation. In: Proc. of the 2018 Int’l Symp. on Code Generation and
Optimization. Vienna: ACM, 2018. 113–125. [doi: 10.1145/3168822]
[18] Botea A, Kishimoto A, Marinescu R. On the complexity of quantum circuit compilation. In: Proc. of the 11th Int’l Symp. on
Combinatorial Search. Stockholm: AAAI, 2018. 138–142. [doi: 10.1609/socs.v9i1.18463]
[19] Davarzani Z, Zomorodi-Moghadam M, Houshmand M, Nouri-Baygi M. A dynamic programming approach for distributing quantum
circuits by bipartite graphs. Quantum Information Processing, 2020, 19(10): 360. [doi: 10.1007/s11128-020-02871-7]
[20] Andrés-Martinez P, Heunen C. Automated distribution of quantum circuits via hypergraph partitioning. Physical Review A, 2019, 100(3):
032308. [doi: 10.1103/PhysRevA.100.032308]
[21] Houshmand M, Mohammadi Z, Zomorodi-Moghadam M, Houshmand M. An evolutionary approach to optimizing teleportation cost in
distributed quantum computation. Int’l Journal of Theoretical Physics, 2020, 59(4): 1315–1329. [doi: 10.1007/s10773-020-04409-0]
[22] Daei O, Navi K, Zomorodi M. Improving the teleportation cost in distributed quantum circuits based on commuting of gates. Int’l Journal
of Theoretical Physics, 2021, 60(9): 3494–3513. [doi: 10.1007/s10773-021-04920-y]
[23] Nikahd E, Mohammadzadeh N, Sedighi M, Zamani MS. Automated window-based partitioning of quantum circuits. Physica Scripta,
2021, 96(3): 035102. [doi: 10.1088/1402-4896/abd57c]
[24] Ghodsollahee I, Davarzani Z, Zomorodi M, Pławiak P, Houshmand M, Houshmand M. Connectivity matrix model of quantum circuits
and its application to distributed quantum circuit optimization. Quantum Information Processing, 2021, 20(7): 235. [doi: 10.1007/s11128-