Page 498 - 《软件学报》2025年第5期
P. 498

2398                                                       软件学报  2025  年第  36  卷第  5  期


                     Letters, 2021, 127(18): 180501. [doi: 10.1103/PhysRevLett.127.180501]
                  [4]  Zhu QL, Cao SR, Chen FS, et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin,
                     2022, 67(3): 240–245. [doi: 10.1016/j.scib.2021.10.017]
                  [5]  Huang  HY,  Broughton  M,  Cotler  J,  Chen  ST,  Li  J,  Mohseni  M,  Neven  H,  Babbush  R,  Kueng  R,  Preskill  J,  Mcclean  JR.  Quantum
                     advantage in learning from experiments. Science, 2022, 376(6598): 1182–1186. [doi: 10.1126/science.abn7293]
                  [6]  Brink  M,  Chow  JM,  Hertzberg  J,  Magesan  E,  Rosenblatt  S.  Device  challenges  for  near  term  superconducting  quantum  processors:
                     Frequency collisions. In: Proc. of the 2018 IEEE Int’l Electron Devices Meeting. San Francisco: IEEE, 2018. 611–613. [doi: 10.1109/
                     IEDM.2018.8614500]
                  [7]  Cuomo D, Caleffi M, Cacciapuoti AS. Towards a distributed quantum computing ecosystem. IET Quantum Communication, 2020, 1(1):
                     3–8. [doi: 10.1049/iet-qtc.2020.0002]
                  [8]  Rodrigo  S,  Abadal  S,  Alarcón  E,  Almudever  CG.  Will  quantum  computers  scale  without  inter-chip  comms?  A  structured  design
                     exploration to the monolithic vs distributed architectures quest. In: Proc. of the 2020 Conf. on Design of Circuits and Integrated Systems.
                     Segovia: IEEE, 2020. 1–6. [doi: 10.1109/DCIS51330.2020.9268630]
                  [9]  Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse JC, Gasparinetti S, Blais A, Wallraff
                     A. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature, 2018, 558(7709): 264–267. [doi: 10.
                     1038/s41586-018-0195-y]
                 [10]  Magnard P, Storz S, Kurpiers P, Schär J, Marxer F, Lütolf J, Walter T, Besse JC, Gabureac M, Reuer K, Akin A, Royer B, Blais A,
                     Wallraff A. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Physical Review
                     Letters, 2020, 125(26): 260502. [doi: 10.1103/PhysRevLett.125.260502]
                 [11]  Leung N, Lu Y, Chakram S, Naik RK, Earnest N, Ma R, Jacobs K, Cleland AN, Schuster DI. Deterministic bidirectional communication
                     and remote entanglement generation between superconducting qubits. npj Quantum Information, 2019, 5(1): 18. [doi: 10.1038/s41534-
                     019-0128-0]
                 [12]  Zhong  YP,  Chang  HS,  Bienfait  A,  Dumur  É,  Chou  MH,  Conner  CR,  Grebel  J,  Povey  RG,  Yan  HX,  Schuster  DI,  Cleland  AN.
                     Deterministic multi-qubit entanglement in a quantum network. Nature, 2021, 590(7847): 571–575. [doi: 10.1038/s41586-021-03288-7]
                 [13]  Yan  HX,  Zhong  YP,  Chang  HS,  Bienfait  A,  Chou  MH,  Conner  CR,  Dumur  É,  Grebel  J,  Povey  RG,  Cleland  AN.  Entanglement
                     purification  and  protection  in  a  superconducting  quantum  network.  Physical  Review  Letters,  2022,  128(8):  080504.  [doi:  10.1103/
                     PhysRevLett.128.080504]
                 [14]  Gold A, Paquette JP, Stockklauser A, Reagor MJ, Alam MS, Bestwick A, Didier N, Nersisyan A, Oruc F, Razavi A, Scharmann B, Sete
                     EA, Sur B, Venturelli D, Winkleblack CJ, Wudarski F, Harburn M, Rigetti C. Entanglement across separate silicon dies in a modular
                     superconducting qubit device. npj Quantum Information, 2021, 7(1): 142. [doi: 10.1038/s41534-021-00484-1]
                 [15]  Conner  CR,  Bienfait  A,  Chang  HS,  Chou  MH,  Dumur  É,  Grebel  J,  Peairs  GA,  Povey  RG,  Yan  H,  Zhong  YP,  Cleland  AN.
                     Superconducting qubits in a flip-chip architecture. Applied Physics Letters, 2021, 118(23): 232602. [doi: 10.1063/5.0050173]
                 [16]  Kosen S, Li HX, Rommel M, et al. Building blocks of a flip-chip integrated superconducting quantum processor. Quantum Science and
                     Technology, 2022, 7(3): 035018. [doi: 10.1088/2058-9565/ac734b]
                 [17]  Siraichi  MY,  Santos  VFD,  Collange  C,  Pereira  FMQ.  Qubit  allocation.  In:  Proc.  of  the  2018  Int’l  Symp.  on  Code  Generation  and
                     Optimization. Vienna: ACM, 2018. 113–125. [doi: 10.1145/3168822]
                 [18]  Botea  A,  Kishimoto  A,  Marinescu  R.  On  the  complexity  of  quantum  circuit  compilation.  In:  Proc.  of  the  11th  Int’l  Symp.  on
                     Combinatorial Search. Stockholm: AAAI, 2018. 138–142. [doi: 10.1609/socs.v9i1.18463]
                 [19]  Davarzani  Z,  Zomorodi-Moghadam  M,  Houshmand  M,  Nouri-Baygi  M.  A  dynamic  programming  approach  for  distributing  quantum
                     circuits by bipartite graphs. Quantum Information Processing, 2020, 19(10): 360. [doi: 10.1007/s11128-020-02871-7]
                 [20]  Andrés-Martinez P, Heunen C. Automated distribution of quantum circuits via hypergraph partitioning. Physical Review A, 2019, 100(3):
                     032308. [doi: 10.1103/PhysRevA.100.032308]
                 [21]  Houshmand M, Mohammadi Z, Zomorodi-Moghadam M, Houshmand M. An evolutionary approach to optimizing teleportation cost in
                     distributed quantum computation. Int’l Journal of Theoretical Physics, 2020, 59(4): 1315–1329. [doi: 10.1007/s10773-020-04409-0]
                 [22]  Daei O, Navi K, Zomorodi M. Improving the teleportation cost in distributed quantum circuits based on commuting of gates. Int’l Journal
                     of Theoretical Physics, 2021, 60(9): 3494–3513. [doi: 10.1007/s10773-021-04920-y]
                 [23]  Nikahd E, Mohammadzadeh N, Sedighi M, Zamani MS. Automated window-based partitioning of quantum circuits. Physica Scripta,
                     2021, 96(3): 035102. [doi: 10.1088/1402-4896/abd57c]
                 [24]  Ghodsollahee I, Davarzani Z, Zomorodi M, Pławiak P, Houshmand M, Houshmand M. Connectivity matrix model of quantum circuits
                     and its application to distributed quantum circuit optimization. Quantum Information Processing, 2021, 20(7): 235. [doi: 10.1007/s11128-
   493   494   495   496   497   498   499   500   501   502