Page 408 - 《软件学报》2025年第5期
P. 408

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2025,36(5):2308−2320 [doi: 10.13328/j.cnki.jos.007197] [CSTR: 32375.14.jos.007197]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                            *
                 面向属性网络社团检测的度修正广义随机块模型

                 王    笑,    戴    芳,    郭文艳,    王军锋


                 (西安理工大学 理学院, 陕西 西安 710054)
                 通信作者: 戴芳, E-mail: daifang@xaut.edu.cn

                 摘 要: 随机块模型可以拟合各种网络的生成, 挖掘网络的隐含结构与潜在联系, 在社团检测中具有明显的优势.
                 广义随机块模型      GSB  是基于链接社团的思想发现广义社团的, 但其仅适用于有向无属性网络. 针对无向属性网络,
                 对网络拓扑信息建模的同时对节点属性进行建模, 提出一种度修正的属性网络广义随机块模型                                 DCGSB (degree
                 corrected general stochastic block model). 在该模型中, 假设网络拓扑信息和属性信息的生成过程都服从幂函数形式
                 的分布, 并且引入节点的度来刻画网络的无标度特性, 可以更好地拟合真实网络的生成. 利用期望最大化算法对
                 DCGSB  模型的参数进行估计, 通过硬划分处理, 得到节点隶属度, 进而完成社团检测. 在                     3  个含有不同结构的真实
                 属性网络数据集上进行实验, 并与          10  种社团检测算法进行对比, 结果表明          DCGSB  模型不仅继承了      GSB  模型的优
                 点, 能发现广义社团, 而且由于属性信息和节点度的引入, 使其社团检测能力优于其他                         10  种比较算法.
                 关键词: 随机块模型; 节点度; 属性网络; 社团检测
                 中图法分类号: TP311

                 中文引用格式: 王笑, 戴芳, 郭文艳, 王军锋. 面向属性网络社团检测的度修正广义随机块模型. 软件学报, 2025, 36(5): 2308–2320.
                 http://www.jos.org.cn/1000-9825/7197.htm
                 英文引用格式: Wang X, Dai F, Guo WY, Wang JF. Degree Corrected General Stochastic Block Model for Community Detection in
                 Attributed Network. Ruan Jian Xue Bao/Journal of Software, 2025, 36(5): 2308–2320 (in Chinese). http://www.jos.org.cn/1000-9825/
                 7197.htm

                 Degree Corrected General Stochastic Block Model for Community Detection in Attributed Network

                 WANG Xiao, DAI Fang, GUO Wen-Yan, WANG Jun-Feng
                 (School of Science, Xi’an University of Technology, Xi’an 710054, China)
                 Abstract:  Stochastic  block  models  can  fit  the  generation  of  various  networks,  mining  implicit  structures  and  potential  connections  within
                 these  networks.  Thus,  they  have  significant  advantages  in  community  detection.  General  stochastic  block  (GSB)  models  discover  general
                 communities  based  on  link  communities,  but  they  are  only  applicable  to  directed  non-attributed  networks.  This  study  proposes  a  degree
                 corrected  general  stochastic  block  (DCGSB)  model  for  undirected  attributed  networks  which  models  both  network  topology  information
                 and node attributes. In the DCGSB model, it is assumed that the generation of network topology information and node attributes follows a
                 distribution  in  the  form  of  power  functions.  Node  degrees  are  introduced  to  characterize  the  scale-free  property  of  networks,  which  allows
                 the  model  to  better  fit  the  generation  of  real  networks.  The  expectation-maximization  algorithm  is  employed  to  estimate  the  parameters  of
                 the  DCGSB  model,  and  node-community  memberships  are  obtained  by  hard  partition  to  complete  community  detection.  Experiments  are
                 conducted  on  three  real  attributed  network  datasets  containing  different  network  structures,  and  the  proposed  model  is  compared  with  ten
                 existing  community  detection  algorithms.  Results  show  that  the  DCGSB  model  not  only  inherits  the  advantages  of  GSB  models  in
                 identifying  general  communities  but  also  outperforms  the  ten  algorithms  in  community  detection  due  to  the  introduction  of  attribute
                 information and node degrees.
                 Key words:  stochastic block model (SBM); node degree; attributed network; community detection



                 *    收稿时间: 2023-09-23; 修改时间: 2024-01-12; 采用时间: 2024-03-28; jos 在线出版时间: 2024-12-11
                  CNKI 网络首发时间: 2024-12-12
   403   404   405   406   407   408   409   410   411   412   413