Page 407 - 《软件学报》2025年第5期
P. 407

王晨旭 等: 基于半监督和自监督图表示学习的恶意节点检测                                                    2307


                     PMLR, 2019. 21–29.
                 [17]  Zhu  J,  Yan  YJ,  Zhao  LX,  Heimann  M,  Akoglu  L,  Koutra  D.  Beyond  homophily  in  graph  neural  networks:  Current  limitations  and
                     effective designs. In: Proc. of the 34th Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020.
                     7793–7804.
                 [18]  Xu K, Li CT, Tian YL, Sonobe T, Kawarabayashi K, Jegelka S. Representation learning on graphs with jumping knowledge networks. In:
                     Proc. of the 35th Int’l Conf. on Machine Learning. Stockholm: PMLR, 2018. 5453–5462.
                 [19]  Cao KD, Wei C, Gaidon A, Arechiga N, Ma TY. Learning imbalanced datasets with label-distribution-aware margin loss. In: Proc. of the
                     33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 1567–1578.
                 [20]  Cui Y, Jia ML, Lin TY, Song Y, Belongie S. Class-balanced loss based on effective number of samples. In: Proc. of the 2019 IEEE/CVF
                     Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 9260–9269. [doi: 10.1109/CVPR.2019.00949]
                 [21]  Hassani  K,  Khasahmadi  AH.  Contrastive  multi-view  representation  learning  on  graphs.  In:  Proc.  of  the  37th  Int’l  Conf.  on  Machine
                     Learning. Online: JMLR.org, 2020. 4116–4126.
                 [22]  Zhang CS, Chen J, Li QL, Deng BQ, Wang J, Chen CG. Deep contrastive learning: A survey. Acta Automatica Sinica, 2023, 49(1):
                     15–39 (in Chinese with English abstract). [doi: 10.16383/j.aas.c220421]
                 [23]  Zhu JG, Wang Z, Chen JJ, Chen YPP, Jiang YG. Balanced contrastive learning for long-tailed visual recognition. In: Proc. of the 2022
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 6908–6917. [doi: 10.1109/CVPR52688.2022.
                     00678]
                 [24]  Jiang M. Catching social media advertisers with strategy analysis. In: Proc. of the 1st Int’l Workshop on Computational Methods for
                     CyberSafety. Indianapolis: ACM, 2016. 5–10. [doi: 10.1145/3002137.3002143]
                 [25]  Gao Y, Wang X, He XN, Liu ZG, Feng HM, Zhang YD. Addressing heterophily in graph anomaly detection: A perspective of graph
                     spectrum. In: Proc. of the 2023 Web Conf. Austin: ACM, 2023. 1528–1538. [doi: 10.1145/3543507.3583268]
                 [26]  Veličković  P,  Cucurull  G,  Casanova  A,  Romero  A,  Liò  P,  Bengio  Y.  Graph  attention  networks.  In:  Proc.  of  the  6th  Int’l  Conf.  on
                     Learning Representations. Vancouver: OpenReview.net, 2018.
                 [27]  Gasteiger J, Bojchevski A, Günnemann S. Predict then propagate: Graph neural networks meet personalized PageRank. In: Proc. of the
                     2019 Int’l Conf. on Learning Representations. New Orleans: OpenReview.net, 2019.
                 [28]  Chien E, Peng JH, Li P, Milenkovic O. Adaptive universal generalized PageRank graph neural network. In: Proc. of the 2021 Int’l Conf.
                     on Learning Representations. Vienna: OpenReview.net, 2021.

                 附中文参考文献:
                 [22]  张重生, 陈杰, 李岐龙, 邓斌权, 王杰, 陈承功. 深度对比学习综述. 自动化学报, 2023, 49(1): 15–39. [doi: 10.16383/j.aas.c220421]


                             王晨旭(1986-), 男, 博士, 副教授, CCF  高级会             王梦勤(2000-), 女, 硕士生, 主要研究领域为财
                            员, 主要研究领域为网络数据挖掘与网络安全,                       务欺诈检测.
                            数据安全, 区块链.



                             王凯月(1995-), 女, 硕士, 主要研究领域为图神
                            经网络, 恶意节点检测.
   402   403   404   405   406   407   408   409   410   411   412