Page 350 - 《软件学报》2025年第5期
P. 350
2250 软件学报 2025 年第 36 卷第 5 期
2014 IEEE Conf. on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 1701–1708. [doi: 10.1109/CVPR.2014.220]
[58] Aswal V, Tupe O, Shaikh S, Charniya NN. Single camera masked face identification. In: Proc. of the 19th IEEE Int’l Conf. on Machine
Learning and Applications. Miami: IEEE, 2020. 57–60. [doi: 10.1109/ICMLA51294.2020.00018]
[59] Li Y, Li YJ, Yan Q, Kong HC, Deng RH. Seeing your face is not enough: An inertial sensor-based liveness detection for face
authentication. In: Proc. of the 22nd ACM SIGSAC Conf. on Computer and Communications Security. Denver: ACM, 2015.
1558–1569. [doi: 10.1145/2810103.2813612]
[60] Tian Y, Xiang SJ. LBP and multilayer DCT based anti-spoofing countermeasure in face liveness detection. Journal of Computer
Research and Development, 2018, 55(3): 643–650 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2018.20160417]
[61] Liu AJ, Zhao CX, Yu ZT, Wan J, Su AY, Liu X, Tan ZC, Escalera S, Xing JL, Liang YY, Guo GD, Lei Z, Li SZ, Zhang D. Contrastive
context-aware learning for 3D high-fidelity mask face presentation attack detection. IEEE Trans. on Information Forensics and Security,
2022, 17: 2497–2507. [doi: 10.1109/TIFS.2022.3188149]
[62] Genovese A, Piuri V, Plataniotis KN, Scotti F. PalmNet: Gabor-PCA convolutional networks for touchless palmprint recognition. IEEE
Trans. on Information Forensics and Security, 2019, 14(12): 3160–3174. [doi: 10.1109/TIFS.2019.2911165]
[63] Song YP, Cai ZM, Zhang ZL. Multi-touch authentication using hand geometry and behavioral information. In: Proc. of the 2017 IEEE
Symp. on Security and Privacy. San Jose: IEEE, 2017. 357–372. [doi: 10.1109/SP.2017.54]
[64] Ma Z, Yang YL, Liu XM, Liu Y, Ma SQ, Ren K, Yao C. EmIr-Auth: Eye movement and iris-based portable remote authentication for
smart grid. IEEE Trans. on Industrial Informatics, 2020, 16(10): 6597–6606. [doi: 10.1109/TII.2019.2946047]
[65] Fahmi PA, Kodirov E, Choi DJ, Lee GS, Azli AMF, Sayeed S. Implicit authentication based on ear shape biometrics using smartphone
camera during a call. In: Proc. of the 2012 IEEE Int’l Conf. on Systems, Man, and Cybernetics. Seoul: IEEE, 2012. 2272–2276. [doi: 10.
1109/ICSMC.2012.6378079]
[66] Xiao J, Li SZ, Dong W, Li QF Hu F. An identity recognition method based on electrocardiograph and photoplethysmograph feature
fusion. Journal of Electronics & Information Technology, 2021, 43(10): 3010–3017 (in Chinese with English abstract). [doi: 10.11999/
JEIT200904]
[67] Zhang CL, Koishida K, Hansen JHL. Text-independent speaker verification based on triplet convolutional neural network embeddings.
IEEE/ACM Trans. on Audio, Speech, and Language Processing, 2018, 26(9): 1633–1644. [doi: 10.1109/TASLP.2018.2831456]
[68] Wan L, Wang Q, Papir A, Moreno IL. Generalized end-to-end loss for speaker verification. In: Proc. of the 2018 IEEE Int’l Conf. on
Acoustics, Speech and Signal Processing. Calgary: IEEE, 2018. 4879–4883. [doi: 10.1109/ICASSP.2018.8462665]
[69] Yu LF, Liu Q. Research and application of deep recurrent neural networks based voiceprint recognition. Application Research of
Computers, 2019, 36(1): 153–158 (in Chinese with English abstract). [doi: 10.19734/j.issn.1001-3695.2017.07.0661]
[70] Li HN, Xu CH, Rathore AS, Li ZX, Zhang HB, Song C, Wang K, Su L, Lin F, Ren K, Xu WY. VocalPrint: Exploring a resilient and
secure voice authentication via mmWave biometric interrogation. In: Proc. of the 18th Conf. on Embedded Networked Sensor Systems.
ACM, 2020. 312–325. [doi: 10.1145/3384419.3430779]
[71] Sprager S, Juric MB. An efficient HOS-based gait authentication of accelerometer data. IEEE Trans. on Information Forensics and
Security, 2015, 10(7): 1486–1498. [doi: 10.1109/TIFS.2015.2415753]
[72] Zou Q, Wang YL, Wang Q, Zhao Y, Li QQ. Deep learning-based gait recognition using smartphones in the wild. IEEE Trans. on
Information Forensics and Security, 2020, 15: 3197–3212. [doi: 10.1109/TIFS.2020.2985628]
[73] Shi MH, Wang ZH. An interpretable gait recognition method based on time series features. Scientia Sinica Informationis, 2020, 50(3):
438–460 (in Chinese with English abstract). [doi: 10.1360/N112018-00326]
[74] van Hamme T, Rúa EA, Preuveneers D, Joosen W. On the security of biometrics and fuzzy commitment cryptosystems: A study on gait
authentication. IEEE Trans. on Information Forensics and Security, 2021, 16: 5211–5224. [doi: 10.1109/TIFS.2021.3124735]
[75] Bo C, Zhang L, Li XY, Huang QY, Wang Y. SilentSense: Silent user identification via touch and movement behavioral biometrics. In:
Proc. of the 19th Annual Int’l Conf. on Mobile Computing & Networking. Miami: ACM, 2013. 187–190. [doi: 10.1145/2500423.
2504572]
[76] Sae-Bae N, Ahmed K, Isbister K, Memon N. Biometric-rich gestures: A novel approach to authentication on multi-touch devices. In:
Proc. of the 2012 SIGCHI Conf. on Human Factors in Computing Systems. Austin: ACM, 2012. 977–986. [doi: 10.1145/2207676.
2208543]
[77] Shahzad M, Zhang SH. Augmenting user identification with WiFi based gesture recognition. Proc. of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2018, 2(3): 134. [doi: 10.1145/3264944]
[78] Shi C, Liu J, Liu HB, Chen YY. Smart user authentication through actuation of daily activities leveraging WiFi-enabled IoT. In: Proc. of
the 18th ACM Int’l Symp. on Mobile Ad Hoc Networking and Computing. Chennai: ACM, 2017. 5. [doi: 10.1145/3084041.3084061]