Page 348 - 《软件学报》2025年第5期
P. 348
2248 软件学报 2025 年第 36 卷第 5 期
[14] Chauhan J, Hu YN, Seneviratne S, Misra A, Seneviratne A, Lee Y. BreathPrint: Breathing acoustics-based user authentication. In: Proc.
of the 15th Annual Int’l Conf. on Mobile Systems, Applications, and Services. Niagara Falls: ACM, 2017. 278–291. [doi: 10.1145/
3081333.3081355]
[15] Zhou B, Xie ZX, Zhang YN, Lohokare J, Gao RP, Ye F. Robust human face authentication leveraging acoustic sensing on smartphones.
IEEE Trans. on Mobile Computing, 2022, 21(8): 3009–3023. [doi: 10.1109/TMC.2020.3048659]
[16] Karapanos N, Marforio C, Soriente C, Capkun S. Sound-proof: Usable two-factor authentication based on ambient sound. In: Proc. of
the 24th USENIX Security Symp. Washington: USENIX Association, 2015. 483–498.
[17] Wang Q, Lin X, Zhou M, Chen YJ, Wang C, Li Q, Luo XY. VoicePop: A pop noise based anti-spoofing system for voice authentication
on smartphones. In: Proc. of the 2019 IEEE Conf. on Computer Communications. Paris: IEEE, 2019. 2062–2070. [doi: 10.1109/
INFOCOM.2019.8737422]
[18] Zhang LH, Tan S, Yang J. Hearing your voice is not enough: An articulatory gesture based liveness detection for voice authentication.
In: Proc. of the 2017 ACM SIGSAC Conf. on Computer and Communications Security. Dallas: ACM, 2017. 57–71. [doi: 10.1145/
3133956.3133962]
[19] Zheng BL, Jiang PP, Wang Q, Li Q, Shen C, Wang C, Ge YJ, Teng QY, Zhang SY. Black-box adversarial attacks on commercial speech
platforms with minimal information. In: Proc. of the 2021 ACM SIGSAC Conf. on Computer and Communications Security. ACM,
2021. 86–107. [doi: 10.1145/3460120.3485383]
[20] Yu JD, Lu L, Chen YY, Zhu YM, Kong LH. An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing.
IEEE Trans. on Mobile Computing, 2021, 20(2): 337–351. [doi: 10.1109/TMC.2019.2947468]
[21] Zhou M, Wang Q, Yang JX, Li Q, Xiao F, Wang ZB, Chen XF. PatternListener: Cracking Android pattern lock using acoustic signals.
In: Proc. of the 2018 ACM SIGSAC Conf. on Computer and Communications Security. Toronto: ACM, 2018. 1775–1787. [doi: 10.1145/
3243734.3243777]
[22] Shirvanian M, Vo S, Saxena N. Quantifying the breakability of voice assistants. In: Proc. of the 2019 IEEE Int’l Conf. on Pervasive
Computing and Communications. Kyoto: IEEE, 2019. 1–11. [doi: 10.1109/PERCOM.2019.8767399]
[23] Zhou M, Qin Z, Lin X, Hu SS, Wang Q, Ren K. Hidden voice commands: Attacks and defenses on the VCS of autonomous driving cars.
IEEE Wireless Communications, 2019, 26(5): 128–133. [doi: 10.1109/MWC.2019.1800477]
[24] Wenger E, Bronckers M, Cianfarani C, Cryan J, Sha A, Zheng HT, Zhao BY. “Hello, it's me”: Deep learning-based speech synthesis
attacks in the real world. In: Proc. of the 2021 ACM SIGSAC Conf. on Computer and Communications Security. ACM, 2021. 235–251.
[doi: 10.1145/3460120.3484742]
[25] Chen GK, Chenb S, Fan LL, Du XN, Zhao Z, Song F, Liu Y. Who is real bob? Adversarial attacks on speaker recognition systems. In:
Proc. of the 2021 IEEE Symp. on Security and Privacy. San Francisco: IEEE, 2021. 694–711. [doi: 10.1109/SP40001.2021.00004]
[26] Uellenbeck S, Dürmuth M, Wolf C, Holz T. Quantifying the security of graphical passwords: The case of Android unlock patterns. In:
Proc. of the 2013 ACM SIGSAC Conf. on Computer & Communications Security. Berlin: ACM, 2013. 161–172. [doi: 10.1145/
2508859.2516700]
[27] Markert P, Bailey DV, Golla M, Dürmuth M, Aviv AJ. This PIN can be easily guessed: Analyzing the security of smartphone unlock
PINs. In: Proc. of the 2020 IEEE Symp. on Security and Privacy. San Francisco: IEEE, 2020. 286–303. [doi: 10.1109/SP40000.2020.
00100]
[28] Wang P, Wang D, Huang XY. Advances in password security. Journal of Computer Research and Development, 2016, 53(10):
2172–2188 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2016.20160483]
[29] Wang D, Zou YK, Tao Y, Wang B. Password guessing based on recurrent neural networks and generative adversarial networks. Chinese
Journal of Computers, 2021, 44(8): 1519–1534. (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2021.01519]
[30] Lee MK. Security notions and advanced method for human shoulder-surfing resistant PIN-entry. IEEE Trans. on Information Forensics
and Security, 2014, 9(4): 695–708. [doi: 10.1109/TIFS.2014.2307671]
[31] Shukla D, Kumar R, Serwadda A, Phoha VV. Beware, your hands reveal your secrets! In: Proc. of the 2014 ACM SIGSAC Conf. on
Computer and Communications Security. Scottsdale: ACM, 2014. 904–917. [doi: 10.1145/2660267.2660360]
[32] Khan H, Hengartner U, Vogel D. Evaluating attack and defense strategies for smartphone PIN shoulder surfing. In: Proc. of the 2018
CHI Conf. on Human Factors in Computing Systems. Montreal: ACM, 2018. 164. [doi: 10.1145/3173574.3173738]
[33] von Zezschwitz E, De Luca A, Brunkow B, Hussmann H. SwiPIN: Fast and secure PIN-entry on smartphones. In: Proc. of the 33rd
Annual ACM Conf. on Human Factors in Computing Systems. Seoul: ACM, 2015. 1403–1406. [doi: 10.1145/2702123.2702212]
[34] Krombholz K, Hupperich T, Holz T. Use the force: Evaluating force-sensitive authentication for mobile devices. In: Proc. of the 12th
USENIX Conf. on Usable Privacy and Security. Denver: USENIX Association, 2016. 207–219. [doi: 10.5555/3235895.3235913]