Page 347 - 《软件学报》2025年第5期
P. 347

周满 等: 基于声感知的移动终端身份认证综述                                                          2247


                 系统大多只是对多个认证因子进行简单的逐一认证, 各认证因子之间关联性差, 攻击者可以利用现有的攻击手段
                 逐个击破, 导致安全性的提升并不显著, 还会使得认证过程变得繁琐, 增加用户操作复杂度. 因此, 双/多因素身份
                 认证系统无论在安全性还是实用性方面都有很大的提升空间. 目前, 基于声感知的双/多因素身份认证已经取得了
                 初步的成果. 例如, LVID    [106] 利用语音提取声纹特征作为第       1  认证因子, 利用高频声信号捕获用户说话时嘴唇运动
                 特征作为第    2  身份认证因子. 这对认证因子具有很强的关联性, 很容易进行有机融合组成多生物特征, 从而提高智
                 能手机语音认证的安全性与鲁棒性. 研究人员应该以兼顾安全性和实用性为核心, 着重探索发现强关联的身份认
                 证因子, 利用现有的硬件设备实现多模态异构数据的同源感知, 一体化提取多特征认证因子, 建立多认证因子有机
                 融合的身份认证系统.

                 6   总 结

                    面对日益严峻的安全威胁, 实现安全可靠的移动终端身份认证是亟待解决的现实问题. 基于声感知的移动终
                 端身份认证因其高度普适性和低硬件成本, 可以有效提高移动终端身份认证系统的安全性. 本文对移动终端身份
                 认证和基于声感知的身份认证国内外研究进展进行了分类梳理, 提出了当前研究工作面临的挑战, 探讨了未来基
                 于声感知的安全身份认证系统的发展趋势. 基于声感知的移动终端身份认证解决方案越来越多样化, 未来的研究
                 重心将始终以提升安全性和实用性为目标, 逐渐向多因子有机融合的身份认证系统转移.

                 References:
                  [1]  Ericsson. Ericsson mobility report. 2022. https://www.ericsson.com/49d3a0/assets/local/reports-papers/mobility-report/documents/2022/
                      ericsson-mobility-report-june-2022.pdf
                  [2]  Ye GX, Tang ZY, Fang DY, Chen XJ, Wolff W, Aviv AJ, Wang Z. A video-based attack for Android pattern lock. ACM Trans. on
                      Privacy and Security, 2018, 21(4): 19. [doi: 10.1145/3230740]
                  [3]  Chen DJ, Zhao ZH, Qin X, Luo YH, Cao MS, Xu H, Liu AF. MagLeak: A learning-based side-channel attack for password recognition
                      with  multiple  sensors  in  IIoT  environment.  IEEE  Trans.  on  Industrial  Informatics,  2022,  18(1):  467–476.  [doi:  10.1109/TII.2020.
                      3045161]
                  [4]  Yang  E,  Fang  S,  Markwood  I,  Liu  Y,  Zhao  SQ,  Lu  Z,  Zhu  HJ.  Wireless  training-free  keystroke  inference  attack  and  defense.
                      IEEE/ACM Trans. on Networking, 2022, 30(4): 1733–1748. [doi: 10.1109/TNET.2022.3147721]
                  [5]  Zhou M, Wang Q, Yang JX, Li Q, Jiang PP, Chen YJ, Wang ZB. Stealing your Android patterns via acoustic signals. IEEE Trans. on
                      Mobile Computing, 2021, 20(4): 1656–1671. [doi: 10.1109/TMC.2019.2960778]
                  [6]  Qin L, Peng F, Long M, Ramachandra R, Busch C. Vulnerabilities of unattended face verification systems to facial components-based
                      presentation attacks: An empirical study. ACM Trans. on Privacy and Security, 2022, 25(1): 4. [doi: 10.1145/3491199]
                  [7]  Rathore AS, Shen YJ, Xu CH, Snyderman J, Han JS, Zhang F, Li ZX, Lin F, Xu WY, Ren K. FakeGuard: Exploring haptic response to
                      mitigate  the  vulnerability  in  commercial  fingerprint  anti-spoofing.  In:  Proc.  of  the  29th  Annual  Network  and  Distributed  System
                      Security Symp. San Diego: The Internet Society, 2022. 1–17.
                  [8]  Wang  C,  Wang  Y,  Chen  YY,  Liu  HB,  Liu  J.  User  authentication  on  mobile  devices:  Approaches,  threats  and  trends.  Computer
                      Networks, 2020, 170: 107118. [doi: 10.1016/j.comnet.2020.107118]
                  [9]  Bai Y, Lu L, Cheng J, Liu J, Chen YY, Yu JD. Acoustic-based sensing and applications: A survey. Computer Networks, 2020, 181:
                      107447. [doi: 10.1016/j.comnet.2020.107447]
                 [10]  Lu  L,  Yu  JD,  Li  ML.  Towards  a  real-time  anti-theft  method  for  mobile  devices  leveraging  acoustic  sensing.  Chinese  Journal  of
                      Computers, 2020, 43(10): 2002–2018 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2020.02002]
                 [11]  Bonneau J, Preibusch S, Anderson R. A birthday present every eleven wallets? The security of customer-chosen banking pins. In: Proc.
                      of the 16th Int’l Conf. on Financial Cryptography and Data Security. Kralendijk: Springer, 2012. 25–40. [doi: 10.1007/978-3-642-32946-
                      3_3]
                 [12]  Zhang Q, Wang D, Zhao R, Yu YG, Shen JJ. Sensing to hear: Speech enhancement for mobile devices using acoustic signals. Proc. of
                      the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2021, 5(3): 137. [doi: 10.1145/3478093]
                 [13]  Shi D, Tao D, Wang JT, Yao MY, Wang ZB, Chen HJ, Helal S. Fine-grained and context-aware behavioral biometrics for pattern lock
                      on  smartphones.  Proc.  of  the  ACM  on  Interactive,  Mobile,  Wearable  and  Ubiquitous  Technologies,  2021,  5(1):  33.  [doi:  10.1145/
                      3448080]
   342   343   344   345   346   347   348   349   350   351   352