Page 354 - 《软件学报》2025年第5期
P. 354
软件学报 ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
2025,36(5):2254−2269 [doi: 10.13328/j.cnki.jos.007186] [CSTR: 32375.14.jos.007186] http://www.jos.org.cn
©中国科学院软件研究所版权所有. Tel: +86-10-62562563
*
基于梯度放大的联邦学习激励欺诈攻击与防御
乐紫莹 1,2,3 , 陈 珂 1,2,3 , 寿黎但 1,2,3 , 骆歆远 1,2,3 , 陈 刚 1,2,3
1
(浙江大学, 浙江 杭州 310027)
2
(区块链与数据安全全国重点实验室 (浙江大学), 浙江 杭州 310027)
(浙江省大数据智能计算重点实验室 (浙江大学), 浙江 杭州 310027)
3
通信作者: 陈珂, E-mail: chenk@zju.edu.cn
摘 要: 在联邦学习领域, 激励机制是吸引高质量数据持有者参与联邦学习并获得更优模型的重要工具. 然而, 现
有的联邦学习研究鲜有考虑到参与者可能滥用激励机制的情况, 也就是他们可能会通过操纵上传的本地模型信息
来获取更多的奖励. 针对这一问题进行了深入研究. 首先, 明确定义联邦学习中的参与者激励欺诈攻击问题, 并引
入激励成本比来评估不同激励欺诈攻击方法的效果以及防御方法的有效性. 其次, 提出一种名为“梯度放大攻击
(gradient scale-up attack)”的攻击方法, 专注于对模型梯度进行激励欺诈. 这种攻击方法计算出相应的放大因子, 并
利用这些因子来提高本地模型梯度的贡献, 以获取更多奖励. 最后, 提出一种高效的防御方法, 通过检验模型梯度
的二范数值来识别欺诈者, 从而有效地防止梯度放大攻击. 通过对 MNIST 等数据集进行详尽地分析和实验验证,
研究结果表明, 所提出的攻击方法能够显著提高奖励, 而相应的防御方法能够有效地抵制欺诈参与者的攻击行为.
关键词: 联邦学习; 激励欺诈攻击; 梯度放大攻击; 恶意参与者检测; 安全保护
中图法分类号: TP309
中文引用格式 乐紫莹, 陈珂, 寿黎但, 骆歆远, 陈刚. 基于梯度放大的联邦学习激励欺诈攻击与防御. 软件学报, 2025,
36(5): 2254–2269. http://www.jos.org.cn/1000-9825/7186.htm
英文引用格式: Yue ZY, Chen K, Shou LD, Luo XY, Chen G. Reward Fraud Attack and Defense for Federated Learning Based on
Gradient Scale-up. Ruan Jian Xue Bao/Journal of Software, 2025, 36(5): 2254–2269 (in Chinese). http://www.jos.org.cn/1000-9825/
7186.htm
Reward Fraud Attack and Defense for Federated Learning Based on Gradient Scale-up
YUE Zi-Ying 1,2,3 , CHEN Ke 1,2,3 , SHOU Li-Dan 1,2,3 , LUO Xin-Yuan 1,2,3 , CHEN Gang 1,2,3
1
(Zhejiang University, Hangzhou 310027, China)
2
(State Key Laboratory of Blockchain and Data Security (Zhejiang University), Hangzhou 310027, China)
3
(Key Laboratory of Big Data Intelligent Computing of Zhejiang Province (Zhejiang University), Hangzhou 310027, China)
Abstract: In the field of federated learning, incentive mechanisms play a crucial role in enticing high-quality data contributors to engage
in federated learning and acquire superior models. However, existing research in federated learning often neglects the potential misuse of
these incentive mechanisms. Specifically, participants may manipulate their locally trained models to dishonestly maximize their rewards.
This issue is thoroughly examined in this study. Firstly, the problem of rewards fraud in federated learning is clearly defined, and the
concept of reward-cost ratio is introduced to assess the effectiveness of various rewards fraud techniques and defense mechanisms.
Following this, an attack method named the “gradient scale-up attack” is proposed, focusing on manipulating model gradients to exploit
the incentive system. This attack method calculates corresponding scaling factors and utilizes them to increase the contribution of the local
model to gain more rewards. Finally, an efficient defense mechanism is proposed, which identifies malicious participants by examining the
L 2 -norms of model updates, effectively thwarting gradient scale-up attacks. Through extensive analysis and experimental validation on
* 基金项目: 浙江省“尖兵”计划 (2024C01021)
收稿时间: 2023-09-28; 修改时间: 2023-11-10, 2024-01-12; 采用时间: 2024-03-26; jos 在线出版时间: 2024-09-14
CNKI 网络首发时间: 2024-09-18