Page 312 - 《软件学报》2025年第5期
P. 312

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2025,36(5):2212−2228 [doi: 10.13328/j.cnki.jos.007179] [CSTR: 32375.14.jos.007179]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                         *
                 本地差分隐私频率估计伪数据攻击及防御方法

                 王源源  1 ,    朱友文  1 ,    吴启晖  2 ,    王    威  2 ,    王    箭  1


                 1
                  (南京航空航天大学 计算机科学与技术学院, 江苏 南京 211106)
                 2
                  (南京航空航天大学 电子信息工程学院, 江苏 南京 211106)
                 通信作者: 朱友文, E-mail: zhuyw@nuaa.edu.cn

                 摘 要: 本地差分隐私被广泛地应用于保护用户隐私的同时收集和分析敏感数据, 但是也易于受到恶意用户的伪
                 数据攻击. 子集选择机制和环机制是具有最优效用的频率估计本地差分隐私方案, 然而, 它们的抗伪数据攻击能力
                 尚缺少深入地分析和评估. 因此, 针对子集选择机制和环机制, 设计伪数据攻击方法, 以评估其抗伪造攻击的能力.
                 首先讨论随机扰动攻击和随机项目攻击, 然后构建针对子集选择机制和环机制的攻击效用最大化伪数据攻击方法.
                 攻击者可以利用该攻击方法, 通过假用户向数据收集方发送精心制作的伪数据, 最大化地提高攻击者所选目标值
                 的频率. 理论上严格分析和对比攻击效用, 并通过实验评估伪数据攻击效果, 展示伪数据攻击对子集选择机制和环
                 机制的影响. 最后, 提出防御措施, 可缓解伪数据攻击的效果.
                 关键词: 本地差分隐私; 伪数据攻击; 防御; 子集选择机制; 环机制
                 中图法分类号: TP309


                 中文引用格式  王源源,   朱友文,   吴启晖,   王威,   王箭.   本地差分隐私频率估计伪数据攻击及防御方法.   软件学报,   2025,
                 36(5): 2212–2228. http://www.jos.org.cn/1000-9825/7179.htm
                 英文引用格式: Wang YY, Zhu YW, Wu QH, Wang W, Wang J. Data Poisoning Attacks and Defense Methods for Frequency
                 Estimation in Local Differential Privacy. Ruan Jian Xue Bao/Journal of Software, 2025, 36(5): 2212–2228 (in Chinese). http://www.jos.
                 org.cn/1000-9825/7179.htm

                 Data Poisoning Attacks and Defense Methods for Frequency Estimation in Local Differential
                 Privacy
                               1
                                            1
                                                                2
                                                      2
                 WANG Yuan-Yuan , ZHU You-Wen , WU Qi-Hui , WANG Wei , WANG Jian 1
                 1
                 (College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
                 2
                 (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
                 Abstract:  Local  differential  privacy  (LDP)  is  widely  used  to  collect  and  analyze  sensitive  data  while  protecting  user  privacy.  However,  it
                 is  vulnerable  to  data  poisoning  attacks  by  malicious  users.  The  k-subset  mechanism  and  the  wheel  mechanism  are  LDP  schemes  with
                 optimal  utility  for  frequency  estimation.  Yet,  their  resistance  to  data  poisoning  attacks  lacks  in-depth  analysis  and  evaluation.  Therefore,
                 data  poisoning  attack  methods  are  designed  to  assess  the  resistance  to  data  poisoning  attacks  of  both  the  k-subset  mechanism  and  the
                 wheel  mechanism.  First,  the  random  perturbed-value  attack  and  random  item  attack  are  discussed,  and  then  the  maximal  gain  attack
                 methods  against  the  k-subset  mechanism  and  the  wheel  mechanism  are  constructed.  The  attack  methods  can  be  exploited  to  maximize  the
                 frequencies  of  target  items  selected  by  attackers,  which  is  achieved  by  sending  carefully  crafted  poisoning  data  to  the  data  collector  via
                 fake  users.  Theoretically,  the  attack  gains  are  rigorously  analyzed  and  compared,  and  the  effects  of  data  poisoning  attacks  are
                 experimentally evaluated, demonstrating their impact on the k-subset mechanism and the wheel mechanism. Finally, defensive measures are
                 proposed to mitigate the effects of data poisoning attacks.
                 Key words:  local differential privacy (LDP); data poisoning attack; defense; k-subset mechanism; wheel mechanism


                 *    基金项目: 国家重点研发计划  (2021YFB3100400)
                  收稿时间: 2023-08-02; 修改时间: 2023-10-12; 采用时间: 2024-03-05; jos 在线出版时间: 2024-08-21
                  CNKI 网络首发时间: 2024-08-22
   307   308   309   310   311   312   313   314   315   316   317