Page 310 - 《软件学报》2025年第5期
P. 310

2210                                                       软件学报  2025  年第  36  卷第  5  期



                                        表 A2 基于加法密钥拆分的两随机数框架的实例化

                                                                                 −1
                        w 1         w 2       k = (d 1 +d 2 ) −1      (d 1 w 1 +d 2 w 2 )    s = (1+d) (k +r)−r  序号
                                     k 2       (d 1 +d 2 ) −1     (d 1 k 1 +d 2 k 2 )    d 1 k 1 +d 2 k 2 +(d 1 +d 2 −1)r  1
                                  −1           (d 1 +d 2 ) −1  (d 1 k 1 +k 2 )  d 1 k 1 +k 2 +(d 1 +d 2 −1)r  2
                                   d k 2
                                  2
                                  −2               −1      −1                 −1                    3
                                   d k 2       (d 1 +d 2 )     (d 1 k 1 +d k 2 ) .    d 1 k 1 +d k 2 +(d 1 +d 2 −1)r
                                  2                        2                  2
                                   −1        (d 1 +d 2 ) −1  (d 1 k 1 +d 2 +k 2 )    d 1 k 1 +d 2 +k 2 +(d 1 +d 2 −1)r  4
                        k 1      1+d k 2
                                   2
                                   −2             −1         −1                −1                   5
                                 1+d k 2      (d 1 +d 2 )     (d 1 k 1 +d 2 +d k 2 )    d 1 k 1 +d 2 +d k 2 +(d 1 +d 2 −1)r
                                   2                         2                 2
                                  d −1  +k 2    (d 1 +d 2 ) −1     (d 1 k 1 +1+d 2 k 2 )    d 1 k 1 +1+d 2 k 2 +(d 1 +d 2 −1)r  6
                                 2
                                                    (           )                                   7
                                  d −2  +k 2    (d 1 +d 2 ) −1      d 1 k 1 +d −1  +d 2 k 2    d 1 k 1 +d −1  +d 2 k 2 +(d 1 +d 2 −1)r
                                 2                        2                 2
                                     k 2        (d 1 +d 2 ) −1     (k 1 +d 2 k 2 )    k 1 +d 2 k 2 +(d 1 +d 2 −1)r  8
                                  −1                 −1                    k 1 +k 2 +(d 1 +d 2 −1)r  9
                                   d k 2         (d 1 +d 2 )     (k 1 +k 2 )
                                  2
                                  −2                −1    −1                 −1                    10
                                   d k 2        (d 1 +d 2 )     (k 1 +d k 2 )    k 1 +d k 2 +(d 1 +d 2 −1)r
                                  2                       2                  2
                      −1           −1           (d 1 +d 2 ) −1     (k 1 +d 2 +k 2 )    k 1 +d 2 +k 2 +(d 1 +d 2 −1)r  11
                                   2
                       d k 1    1+d k 2
                      1
                                   −2             −1        −1                 −1                  12
                                 1+d k 2      (d 1 +d 2 )     (k 1 +d 2 +d k 2 )    k 1 +d 2 +d k 2 +(d 1 +d 2 −1)r
                                   2                        2                  2
                                  d −1  +k 2    (d 1 +d 2 ) −1     (k 1 +1+d 2 k 2 )    k 1 +1+d 2 k 2 +(d 1 +d 2 −1)r  13
                                 2
                                                    (    −1    )            −1                     14
                                 −2
                                                  −1
                                  d  +k 2     (d 1 +d 2 )      k 1 +d  +d 2 k 2    k 1 +d  +d 2 k 2 +(d 1 +d 2 −1)r
                                 2                       2                  2
                                                     (        )                                    15
                                                                         −1
                                     k 2       (d 1 +d 2 ) −1      −1     d k 1 +d 2 k 2 +(d 1 +d 2 −1)r
                                                      d k 1 +d 2 k 2
                                                       1                 1
                                                      (      )
                                  −1                −1  −1                −1                       16
                                   d k 2        (d 1 +d 2 )  d k 1 +k 2    d k 1 +k 2 +(d 1 +d 2 −1)r
                                  2                    1                  1
                                  −2               −1  (  −1  −1  )      −1   −1                   17
                                   d k 2       (d 1 +d 2 )  d k 1 +d k 2    d k 1 +d k 2 +(d 1 +d 2 −1)r
                                  2                   1    2             1    2
                                                    (          )
                      −2           −1              −1  −1                −1                        18
                       d k 1     1+d k 2       (d 1 +d 2 )  d k 1 +d 2 +k 2    d k 1 +d 2 +k 2 +(d 1 +d 2 −1)r
                      1            2                  1                  1
                                   −2            −1  (  −1   −1  )      −1      −1                 19
                                 1+d k 2     (d 1 +d 2 )  d k 1 +d 2 +d k 2    d k 1 +d 2 +d k 2 +(d 1 +d 2 −1)r
                                   2                1        2         1        2
                                                    (          )
                                                                        −1
                                  d −1  +k 2    (d 1 +d 2 ) −1  −1       d k 1 +1+d 2 k 2 +(d 1 +d 2 −1)r  20
                                 2                  d k 1 +1+d 2 k 2    1
                                                     1
                                                    (  −1  −1  )        −1  −1                     21
                                 −2
                                                  −1
                                  d  +k 2     (d 1 +d 2 )  d  +d  +d 2 k 2    d  +d  +d 2 k 2 +(d 1 +d 2 −1)r
                                 2                   1   2              1   2
                                     k 2       (d 1 +d 2 ) −1 (d 1 +k 1 +d 2 k 2 )    d 1 +k 1 +d 2 k 2 +(d 1 +d 2 −1)r  22
                                                    −1
                                  −1          (d 1 +d 2 ) (d 1 +k 1 +k 2 )  d 1 +k 1 +k 2 +(d 1 +d 2 −1)r  23
                                   d k 2
                                  2
                                  −2               −1      −1                  −1                  24
                                   d k 2       (d 1 +d 2 ) (d 1 +k 1 +d k 2 )    d 1 +k 1 +d k 2 +(d 1 +d 2 −1)r
                                  2                        2                   2
                                   −1             −1                    d 1 +k 1 +d 2 +k 2 +(d 1 +d 2 −1)r  25
                       −1        1+d k 2      (d 1 +d 2 )  (d 1 +k 1 +d 2 +k 2 )
                      1+d k 1      2
                       1
                                   −2            −1          −1                 −1                 26
                                 1+d k 2     (d 1 +d 2 ) (d 1 +k 1 +d 2 +d k 2 )    d 1 +k 1 +d 2 +d k 2 +(d 1 +d 2 −1)r
                                   2                         2                  2
                                  d −1  +k 2    (d 1 +d 2 ) −1  (d 1 +k 1 +1+d 2 k 2 )    d 1 +k 1 +1+d 2 k 2 +(d 1 +d 2 −1)r  27
                                 2
                                                   (            )                                  28
                                  d −2  +k 2    (d 1 +d 2 ) −1  d 1 +k 1 +d −1  +d 2 k 2    d 1 +k 1 +d  −1 +d 2 k 2 +(d 1 +d 2 −1)r
                                 2                        2                  2
                                                    (           )                                  29
                                                                           −1
                                     k 2    (d 1 +d 2 ) −1  −1           d 1 +d k 1 +d 2 k 2 +(d 1 +d 2 −1)r
                                                       d 1 +d k 1 +d 2 k 2  1
                                                        1
                       −2
                      1+d k 1
                       1          −1              −1  (        )            −1                     30
                                                         −1
                                   d k 2      (d 1 +d 2 )      d 1 +d k 1 +k 2    d 1 +d k 1 +k 2 +(d 1 +d 2 −1)r
                                  2                      1                  1
   305   306   307   308   309   310   311   312   313   314   315