Page 307 - 《软件学报》2025年第5期
P. 307

刘振亚 等: SM2  数字签名算法的两方门限计算方案框架                                                   2207


                              序号  1  2   3   4   5   6    7   8   9   10  11  12  13  14   15  16  17






                              s = (1+d) −1 (k +r)−r  d 1 d 2 k 2 +d 1 k 1 +(d 1 d 2 −1)r  d 1 d 2 +d 1 k 1 +(d 1 d 2 −1)r  d 1 (k 2 +k 1 )+(d 1 d 2 −1)r  d 1 d 2 +d 1 d 2 k 2 +d 1 k 1 +(d 1 d 2 −1)r  d 1 d 2 +d 1 (k 2 +k 1 )+(d 1 d 2 −1)r  d 1 d −1 +d 1 d 2 k 2 +d 1 k 1 +(d 1 d 2 −1)r  d 1 +d 1 d 2 k 2 +d 1 k 1 +(d 1 d 2 −1)r  d 1 d 2 k 2 +d 2 k 1 +(d 1 d 2 −1)r  1  d 1 d 2 k 2 +d 2 k 1 +(d 1 d 2 −1)r  1  d 1 (k 2 +d 1 k 1 )+(d 1 d 2 −1)r  d 1 d 2 +d 1 d 2 k 2 +d 2 k 1 +(







                                      2       2                    2       2                   2  ( k 2 +d −1 k 1
                                                      2                            2               d 1




                                            )  2  )  )  )    )   )       )  2  )  )  )
                          表 A1 基于乘法密钥拆分的两随机数框架的实例化
                                    )
                               1                               1   1  )  1     1        1    )
                               2 +w ′  2                           2       1       1            2
                              k = d 1 w ′  (1+d)(d 1 d 2 k 2 +d 1 k 1 )  (1+d) ( d 1 d 2 k 2 +d 1 k 1  (1+d)(d 1 k 2 +d 1 k 1 )  (1+d) ( d 1 d 2 +d 1 k 1 +d 1 d 2 k 2  (1+d) ( d 1 d 2 +d 1 k 2 +d 1 k 1  (1+d) ( d 1 d 2 +d 1 k 1 +d 1 d 2 k 2  2  (1+d) ( d 1 +d 1 d 2 k 2 +d 1 k 1  (1+d) ( d 1 d 2 k 2 +d 2 k 1  (1+d) ( d 1 d 2 k 2 +d 2 k 1  (1+d) ( d 1 k 2 +d 2 k 1  (1+d) ( d 1 d 2 +d 2 k 1 +d 1 d 2 k 2  (1+d) ( d 1 d 2 +d 1 k 2 +d 2 k 1  (1+d) ( d 1 d 2 +d 2 k 1 +d 1 d 2 k






                              k = w 2 +d −1 w 1  2  k 2 +d −1 k 1  2  d 2 k 2 +d −1 k 1  2  d −1 (k 2 +k 1 )  1+d 2 k 2 +d −1 k 1  2  1+d −1 (k 2 +k 1 )  2  d 2 +k 2 +d −1 k 1  2  d −1 +k 2 +d −1 k 1  2  k 2 +d 1 d −1 k 1  2  d 2 k 2 +d 1 d −1 k 1  2  d −1 (k 2 +d 1 k 1 )  1+d 2 k 2 +d 1 d −1 k 1  2  1+d −1 (k 2 +d 1 k 1 )  d 2 +k 2 +d 1 d −1 k 1  2  d −1 +k 2 +d 1 d −1 k 1  2  k 2 +d −1 d −1 k 1  2  1  d 2 k 2 +d −1 d −1 k 1  2  1  ) d −1 ( k 2 +d −1 k 1  1




                                             2            2              2     2       2            2


                                            )  2    )                    )  2    )
                                 (1+d)d 2 k 2  (1+d)d 2 k 2  2  (1+d)k 2  (1+d)(d 2 +k 2 )  2  (1+d)(1+d 2 k 2 )  (1+d)d 2 k 2  (1+d)d 2 k 2  2  (1+d)k 2  (1+d)(d 2 +k 2 )  2  (1+d)(1+d 2 k 2 )  (1+d)d 2 k 2  (1+d)d 2 k 2  2  (1+d)k 2
                               2
                              w ′             (1+d) ( d 2 +d 2 k 2  (1+d) ( d 2 +d 2 k 2  (1+d) ( d 2 +d 2 k 2  (1+d) ( d 2 +d 2 k 2




                                              (1+d)d 1 k 1                 (1+d)d 2 k 1  1     (1+d)k 1
                               1
                              w ′



                              w 2  k 2  d 2 k 2  d −1 k 2  1+d 2 k 2  1+d −1 k 2  2  d 2 +k 2  d −1 +k 2  k 2  d 2 k 2  d −1 k 2  1+d 2 k 2  1+d −1 k 2  2  d 2 +k 2  d −1 +k 2  k 2  d 2 k 2  d −1 k 2
                                          2                            2                            2
                                                          2                            2



                     A
                              w 1             k 1                         d 1 k 1              d −1 k 1
                                                                                                1
                     附录
   302   303   304   305   306   307   308   309   310   311   312