Page 162 - 《软件学报》2025年第5期
P. 162
2062 软件学报 2025 年第 36 卷第 5 期
[22] Liao ZL, Liu LL, Chen YB. A novel link prediction method for opportunistic networks based on random walk and a deep belief network.
IEEE Access, 2020, 8: 16236–16247. [doi: 10.1109/ACCESS.2020.2967407]
[23] Islam MK, Aridhi S, Smail-Tabbone M. A comparative study of similarity-based and GNN-based link prediction approaches. arXiv:
2008.08879, 2020.
[24] Diaz-Pace JA, Tommasel A, Godoy D. Can network analysis techniques help to predict design dependencies? An initial study. In: Proc.
of the 2018 IEEE Int’l Conf. on Software Architecture Companion (ICSA-C). Seattle: IEEE, 2018. 64–67. [doi: 10.1109/ICSA-C.2018.
00025]
[25] Deng WT, Zhang MY, He P, Zeng ZF, Li B. Software system evolution analysis based on network representation learning. Journal of
Shandong University (Engineering Science), 2023, 53(2): 77–86 (in Chinese with English abstract). [doi: 10.6040/j.issn.1672-3961.0.
2022.342]
[26] Zhou CY, Zeng C, He P, Zhang Y. GKCI: An improved GNN-based key class identification method. Ruan Jian Xue Bao/Journal of
Software, 2023, 34(6): 2509–2525 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6846.htm [doi: 10.13328/j.cnki.
jos.006846]
[27] Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: Proc. of the 22nd ACM SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining. San Francisco: ACM, 2016. 855–864. [doi: 10.1145/2939672.2939754]
[28] De A, Bhattacharya S, Sarkar S, Ganguly N, Chakrabarti S. Discriminative link prediction using local, community, and global signals.
IEEE Trans. on Knowledge and Data Engineering, 2016, 28(8): 2057–2070. [doi: 10.1109/TKDE.2016.2553665]
[29] Murphy R, Srinivasan B, Rao V, Ribeiro B. Relational pooling for graph representations. In: Proc. of the 36th Int’l Conf. on Machine
Learning. Long Beach: PMLR, 2019. 4663–4673.
[30] Srinivasan B, Ribeiro B. On the equivalence between positional node embeddings and structural graph representations.
arXiv:1910.00452, 2020.
[31] Dwivedi VP, Joshi CK, Luu AT, Laurent T, Bengio Y, Bresson X. Benchmarking graph neural networks. arXiv:2003.00982, 2022.
[32] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2017.
[33] Ma XJ, Chen Q, Wu Y, Song GJ, Wang L, Zheng B. Rethinking structural encodings: Adaptive Graph Transformer for node
classification task. In: Proc. of the 2023 ACM Web Conf. Austin: ACM, 2023. 533–544. [doi: 10.1145/3543507.3583464]
[34] Martínez V, Berzal F, Cubero JC. A survey of link prediction in complex networks. ACM Computing Surveys, 2016, 49(4): 69. [doi: 10.
1145/3012704]
[35] Kong XL, Li BX, Wang LL, Wu WS. Directory-based dependency processing for software architecture recovery. IEEE Access, 2018, 6:
52321–52335. [doi: 10.1109/ACCESS.2018.2870118]
[36] Pandey S, Kumar K. Software fault prediction for imbalanced data: A survey on recent developments. Procedia Computer Science, 2023,
218: 1815–1824. [doi: 10.1016/j.procs.2023.01.159]
[37] Sharma BU, Sadam R. How far does the predictive decision impact the software project? The cost, service time, and failure analysis from
a cross-project defect prediction model. Journal of Systems and Software, 2023, 195: 111522. [doi: 10.1016/j.jss.2022.111522]
[38] He P, Wei C, Lü SK, Zeng C, Li B. GoGCN for interaction prediction between classes in software system. Ruan Jian Xue Bao/Journal of
Software, 2023, 34(11): 5029–5041 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6678.htm [doi: 10.13328/j.cnki.
jos.006678]
[39] Tan QY, Zhang X, Liu NH, Zha D, Li L, Chen R, Choi SH, Hu X. Bring your own view: Graph neural networks for link prediction with
personalized subgraph selection. In: Proc. of the 16th ACM Int’l Conf. on Web Search and Data Mining. Singapore: ACM, 2023.
625–633. [doi: 10.1145/3539597.3570407]
[40] Zhou T. Discriminating abilities of threshold-free evaluation metrics in link prediction. Physica A: Statistical Mechanics and Its
Applications, 2023, 615: 128529. [doi: 10.1016/j.physa.2023.128529]
[41] Morris C, Ritzert M, Fey M, Hamilton WL, Lenssen JE, Rattan G, Grohe M. Weisfeiler and leman go neural: Higher-order graph neural
networks. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 4602–4609. [doi: 10.1609/aaai.v33i01.
33014602]
[42] Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. arXiv:1710.10903, 2018.
[43] Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large graphs. In: Proc. of the 31st Int’l Conf. on Neural
Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 1025–1035.
[44] Grzegorzewski P, Śpiewak M. The sign test and the signed-rank test for interval-valued data. Int’l Journal of Intelligent Systems, 2019,
34(9): 2122–2150. [doi: 10.1002/int.22134]
[45] He P, Wang P, Li B, Hu SW. An evolution analysis of software system based on multi-granularity software network. Acta Electronica