Page 162 - 《软件学报》2025年第5期
P. 162

2062                                                       软件学报  2025  年第  36  卷第  5  期


                 [22]  Liao ZL, Liu LL, Chen YB. A novel link prediction method for opportunistic networks based on random walk and a deep belief network.
                     IEEE Access, 2020, 8: 16236–16247. [doi: 10.1109/ACCESS.2020.2967407]
                 [23]  Islam MK, Aridhi S, Smail-Tabbone M. A comparative study of similarity-based and GNN-based link prediction approaches. arXiv:
                     2008.08879, 2020.
                 [24]  Diaz-Pace JA, Tommasel A, Godoy D. Can network analysis techniques help to predict design dependencies? An initial study. In: Proc.
                     of the 2018 IEEE Int’l Conf. on Software Architecture Companion (ICSA-C). Seattle: IEEE, 2018. 64–67. [doi: 10.1109/ICSA-C.2018.
                     00025]
                 [25]  Deng WT, Zhang MY, He P, Zeng ZF, Li B. Software system evolution analysis based on network representation learning. Journal of
                     Shandong University (Engineering Science), 2023, 53(2): 77–86 (in Chinese with English abstract). [doi: 10.6040/j.issn.1672-3961.0.
                     2022.342]
                 [26]  Zhou CY, Zeng C, He P, Zhang Y. GKCI: An improved GNN-based key class identification method. Ruan Jian Xue Bao/Journal of
                     Software, 2023, 34(6): 2509–2525 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6846.htm [doi: 10.13328/j.cnki.
                     jos.006846]
                 [27]  Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: Proc. of the 22nd ACM SIGKDD Int’l Conf. on Knowledge
                     Discovery and Data Mining. San Francisco: ACM, 2016. 855–864. [doi: 10.1145/2939672.2939754]
                 [28]  De A, Bhattacharya S, Sarkar S, Ganguly N, Chakrabarti S. Discriminative link prediction using local, community, and global signals.
                     IEEE Trans. on Knowledge and Data Engineering, 2016, 28(8): 2057–2070. [doi: 10.1109/TKDE.2016.2553665]
                 [29]  Murphy R, Srinivasan B, Rao V, Ribeiro B. Relational pooling for graph representations. In: Proc. of the 36th Int’l Conf. on Machine
                     Learning. Long Beach: PMLR, 2019. 4663–4673.
                 [30]  Srinivasan  B,  Ribeiro  B.  On  the  equivalence  between  positional  node  embeddings  and  structural  graph  representations.
                     arXiv:1910.00452, 2020.
                 [31]  Dwivedi VP, Joshi CK, Luu AT, Laurent T, Bengio Y, Bresson X. Benchmarking graph neural networks. arXiv:2003.00982, 2022.
                 [32]  Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2017.
                 [33]  Ma  XJ,  Chen  Q,  Wu  Y,  Song  GJ,  Wang  L,  Zheng  B.  Rethinking  structural  encodings:  Adaptive  Graph  Transformer  for  node
                     classification task. In: Proc. of the 2023 ACM Web Conf. Austin: ACM, 2023. 533–544. [doi: 10.1145/3543507.3583464]
                 [34]  Martínez V, Berzal F, Cubero JC. A survey of link prediction in complex networks. ACM Computing Surveys, 2016, 49(4): 69. [doi: 10.
                     1145/3012704]
                 [35]  Kong XL, Li BX, Wang LL, Wu WS. Directory-based dependency processing for software architecture recovery. IEEE Access, 2018, 6:
                     52321–52335. [doi: 10.1109/ACCESS.2018.2870118]
                 [36]  Pandey S, Kumar K. Software fault prediction for imbalanced data: A survey on recent developments. Procedia Computer Science, 2023,
                     218: 1815–1824. [doi: 10.1016/j.procs.2023.01.159]
                 [37]  Sharma BU, Sadam R. How far does the predictive decision impact the software project? The cost, service time, and failure analysis from
                     a cross-project defect prediction model. Journal of Systems and Software, 2023, 195: 111522. [doi: 10.1016/j.jss.2022.111522]
                 [38]  He P, Wei C, Lü SK, Zeng C, Li B. GoGCN for interaction prediction between classes in software system. Ruan Jian Xue Bao/Journal of
                     Software, 2023, 34(11): 5029–5041 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6678.htm [doi: 10.13328/j.cnki.
                     jos.006678]
                 [39]  Tan QY, Zhang X, Liu NH, Zha D, Li L, Chen R, Choi SH, Hu X. Bring your own view: Graph neural networks for link prediction with
                     personalized  subgraph  selection.  In:  Proc.  of  the  16th  ACM  Int’l  Conf.  on  Web  Search  and  Data  Mining.  Singapore:  ACM,  2023.
                     625–633. [doi: 10.1145/3539597.3570407]
                 [40]  Zhou  T.  Discriminating  abilities  of  threshold-free  evaluation  metrics  in  link  prediction.  Physica  A:  Statistical  Mechanics  and  Its
                     Applications, 2023, 615: 128529. [doi: 10.1016/j.physa.2023.128529]
                 [41]  Morris C, Ritzert M, Fey M, Hamilton WL, Lenssen JE, Rattan G, Grohe M. Weisfeiler and leman go neural: Higher-order graph neural
                     networks. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 4602–4609. [doi: 10.1609/aaai.v33i01.
                     33014602]
                 [42]  Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. arXiv:1710.10903, 2018.
                 [43]  Hamilton  WL,  Ying  R,  Leskovec  J.  Inductive  representation  learning  on  large  graphs.  In:  Proc.  of  the  31st  Int’l  Conf.  on  Neural
                     Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 1025–1035.
                 [44]  Grzegorzewski P, Śpiewak M. The sign test and the signed-rank test for interval-valued data. Int’l Journal of Intelligent Systems, 2019,
                     34(9): 2122–2150. [doi: 10.1002/int.22134]
                 [45]  He P, Wang P, Li B, Hu SW. An evolution analysis of software system based on multi-granularity software network. Acta Electronica
   157   158   159   160   161   162   163   164   165   166   167