Page 161 - 《软件学报》2025年第5期
P. 161
邓文涛 等: 基于图神经网络的多粒度软件系统交互关系预测 2061
上取得了高准确性, 这直接反映了方法的有效性. 在实践中, 高准确性意味着开发者可以更有信心地依赖我们的方
法进行交互关系预测, 减少了误导性的信息. 例如, 在进行代码重构或模块调整时, 高准确性的预测结果可以提供可
靠的决策支持, 确保开发者采取的变更不会导致系统不稳定或功能异常. (4) 公开了本研究的代码数据 (https://github.
com/ddbaba2333/Interaction-prediction.git), 供开发者和代码维护人员实践使用.
References:
[1] Santos R, Constantinou E, Antonino P, Bosch J. Reporting on a decade of promoting software engineering for systems-of-systems and
software ecosystems. ACM SIGSOFT Software Engineering Notes, 2023, 48(2): 24–28. [doi: 10.1145/3587062.3587070]
[2] Qu Y, Chi JL, Yin H. Leveraging developer information for efficient effort-aware bug prediction. Information and Software Technology,
2021, 137: 106605. [doi: 10.1016/j.infsof.2021.106605]
[3] Masuda S, Hagar J, Nishi Y, Suzuki K. Software test architecture definition by analogy with software architecture. In: Proc. of the 2022
IEEE Int’l Conf. on Software Testing, Verification and Validation Workshops (ICSTW). Valencia: IEEE, 2022. 244–247. [doi: 10.1109/
ICSTW55395.2022.00050]
[4] Hassan F, Mostafa S, Lam ESL, Wang XY. Automatic building of Java projects in software repositories: A study on feasibility and
challenges. In: Proc. of the 2017 ACM/IEEE Int’l Symp. on Empirical Software Engineering and Measurement (ESEM). Toronto: IEEE,
2017. 38–47. [doi: 10.1109/ESEM.2017.11]
[5] Girbea A, Suciu C, Nechifor S, Sisak F. Design and implementation of a service-oriented architecture for the optimization of industrial
applications. IEEE Trans. on Industrial Informatics, 2014, 10(1): 185–196. [doi: 10.1109/TII.2013.2253112]
[6] Meneely A, Williams L, Snipes W, Osborne J. Predicting failures with developer networks and social network analysis. In: Proc. of the
16th ACM SIGSOFT Int’l Symp. on Foundations of Software Engineering. Atlanta: ACM, 2008. 13–23. [doi: 10.1145/1453101.
1453106]
[7] Limam N, Boutaba R. Assessing software service quality and trustworthiness at selection time. IEEE Trans. on Software Engineering,
2010, 36(4): 559–574. [doi: 10.1109/TSE.2010.2]
[8] Chen HC, Perozzi B, Al-Rfou R, Skiena S. A tutorial on network embeddings. arXiv:1808.02590, 2018.
[9] Wu ZH, Pan SR, Chen FW, Long GD, Zhang CQ, Yu PS. A comprehensive survey on graph neural networks. IEEE Trans. on Neural
Networks and Learning Systems, 2021, 32(1): 4–24. [doi: 10.1109/TNNLS.2020.2978386]
[10] Zhou J, Cui GQ, Hu SD, Zhang ZY, Yang C, Liu ZY, Wang LF, Li CC, Sun MS. Graph neural networks: A review of methods and
applications. AI Open, 2020, 1: 57–81. [doi: 10.1016/j.aiopen.2021.01.001]
[11] Dwivedi VP, Bresson X. A generalization of Transformer networks to graphs. arXiv:2012.09699, 2021.
[12] Zhang JW, Zhang HP, Xia CY, Sun L. Graph-BERT: Only attention is needed for learning graph representations. arXiv:2001.05140,
2020.
[13] Mialon G, Chen DX, Selosse M, Mairal J. GraphiT: Encoding graph structure in Transformers. arXiv:2106.05667, 2021.
[14] Wong TT, Yeh PY. Reliable accuracy estimates from k-fold cross validation. IEEE Trans. on Knowledge and Data Engineering, 2020,
32(8): 1586–1594. [doi: 10.1109/tkde.2019.2912815]
[15] Nicholson A, Guo JLC. Issue link label recovery and prediction for open source software. In: Proc. of the 29th IEEE Int’l Requirements
Engineering Conf. Workshops (REW). Notre Dame: IEEE, 2021. 126–135. [doi: 10.1109/REW53955.2021.00024]
[16] Khoshmanesh S, Lutz R. Does link prediction help find feature interactions in software product lines? In: Proc. of the 7th IEEE Int’l
Workshop on Artificial Intelligence for Requirements Engineering (AIRE). Zurich: IEEE, 2020. 87–90. [doi: 10.1109/AIRE51212.2020.
00020]
[17] Xu ZD. Research on link prediction based on similarity index algorithm. IOP Conf. Series: Materials Science and Engineering, 2019,
612(3): 032194. [doi: 10.1088/1757-899X/612/3/032194]
[18] Sun J, Lin ZJ. Exploiting node similarity based on graphical Markov models for link prediction. Journal of Physics: Conf. Series, 2020,
1631(1): 012149. [doi: 10.1088/1742-6596/1631/1/012149]
[19] Chen WL, Zhou YZ. A link prediction similarity index based on enhanced local path method. In: Proc. of the 40th Chinese Control Conf.
(CCC). Shanghai: IEEE, 2021. 753–757. [doi: 10.23919/CCC52363.2021.9549554]
[20] Xia X, Lo D, Wang XY, Zhou B. Build system analysis with link prediction. In: Proc. of the 29th Annual ACM Symp. on Applied
Computing. Gyeongju: ACM, 2014. 1184–1186. [doi: 10.1145/2554850.2555134]
[21] Chen GF, Wang HB, Fang YL, Jiang L. Link prediction by deep non-negative matrix factorization. Expert Systems with Applications,
2022, 188: 115991. [doi: 10.1016/j.eswa.2021.115991]