Page 348 - 《软件学报》2025年第4期
P. 348
1754 软件学报 2025 年第 36 卷第 4 期
Proc. of the 30th Int’l Conf. on Neural Information Processing Systems. Barcelona: Curran Associates Inc., 2016. 1479–1487.
[88] Ostrovski G, Bellemare MG, van den Oord A, Munos R. Count-based exploration with neural density models. In: Proc. of the 34th Int’l
Conf. Machine Learning. Sydney: IEEE, 2017. 2721–2730.
[89] Tang HR, Houthooft R, Foote D, Stooke A, Chen X, Duan Y, Schulman J, De Turck F, Abbeel P. #Exploration: A study of count-based
exploration for deep reinforcement learning. In: Proc. of the 31st Int’l Conf. on Neural Information Processing Systems. Long Beach:
Curran Associates Inc., 2017. 2750–2759.
[90] Pathak D, Agrawal P, Efros AA, Darrell T. Curiosity-driven exploration by self-supervised prediction. In: Proc. of the 34th Int’l Conf.
on Machine Learning. Sydney: JMLR, 2017. 2778–2787.
[91] Burda Y, Edwards H, Pathak D, Storkey A, Darrell T, Efros AA. Large-scale study of curiosity-driven learning. In: Proc. of the 7th Int’l
Conf. on Learning Representations. New Orleans: ICLR, 2019.
[92] Pathak D, Gandhi D, Gupta A. Self-supervised exploration via disagreement. In: Proc. of the 36th Int’l Conf. on Machine Learning.
Long Beach: PMLR, 2019. 5062–5071.
[93] Chen T, Gupta S, Gupta A. Learning exploration policies for navigation. In: Proc. of the 7th Int’l Conf. on Learning Representations.
New Orleans: ICLR, 2019.
[94] Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, Viola F, Green T, Back T, Natsev P, Suleyman M, Zisserman
A. The kinetics human action video dataset. arXiv:1705.06950, 2017.
[95] Ramakrishnan SK, Jayaraman D, Grauman K. Emergence of exploratory look-around behaviors through active observation completion.
Science Robotics, 2019, 4(30): eaaw6326. [doi: 10.1126/scirobotics.aaw6326]
[96] Jayaraman D, Grauman K. Learning to look around: Intelligently exploring unseen environments for unknown tasks. In: Proc. of the
2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 1238–1247. [doi: 10.1109/CVPR.
2018.00135]
[97] Isola P, Zhu JY, Zhou TH, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proc. of the 2017 IEEE
Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5967–5976. [doi: 10.1109/CVPR.2017.632]
[98] Cassandra AR, Kaelbling LP, Kurien JA. Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In: Proc. of
the 1996 IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems. Osaka: IEEE, 1996. 963–972. [doi: 10.1109/IROS.1996.571080]
[99] Burgard W, Stachniss C, Grisetti G. Information gain-based exploration using rao-blackwellized particle filters. In: Proc. of the 2005 Int’l
Conf. on Robotics: Science and Systems. Cambridge: The MIT Press, 2005. 65–72.
[100] Sun Y, Gomez F, Schmidhuber J. Planning to be surprised: Optimal Bayesian exploration in dynamic environments. In: Proc. of the 4th
Int’l Conf. on Artificial General Intelligence. Mountain View: Springer, 2011. 41–51. [doi: 10.1007/978-3-642-22887-2_5]
[101] 123–130. [doi: 10.1109/RO-MAN50785.2021.9515530]
Raileanu R, Rocktäschel. RIDE: Rewarding impact-driven exploration for procedurally-generated environments. In: Proc. of the 8th Int’l
Conf. on Learning Representations. Addis Ababa: ICLR, 2020.
[102] Bigazzi R, Landi F, Cascianelli S, Baraldi L, Cornia M, Cucchiara R. Focus on impact: Indoor exploration with intrinsic motivation.
IEEE Robotics and Automation Letters, 2022, 7(2): 2985–2992. [doi: 10.1109/LRA.2022.3145971]
[103] Wijmans E, Kadian A, Morcos A, Lee S, Essa I, Parikh D, Savva M, Batra D. DD-PPO: Learning near-perfect pointgoal navigators from
2.5 billion frames. In: Proc. of the 8th Int’l Conf. on Learning Representations. Addis Ababa: ICLR, 2020.
[104] Li JC, Wang X, Tang SL, Shi HZ, Wu F, Zhuang YT, Wang WY. Unsupervised reinforcement learning of transferable meta-skills for
embodied navigation. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020.
12120–12129. [doi: 10.1109/CVPR42600.2020.01214]
[105] Zeng KH, Weihs L, Farhadi A, Mottaghi R. Pushing it out of the way: Interactive visual navigation. In: Proc. of the 2021 IEEE/CVF
Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 9863–9872. [doi: 10.1109/CVPR46437.2021.00974]
[106] Kumar G, Shankar NS, Didwania H, Roychoudhury RD, Bhowmick B, Krishna KM. GCExp: Goal-conditioned exploration for object
goal navigation. In: Proc. of the 30th IEEE Int’l Conf. on Robot & Human Interactive Communication. Vancouver: IEEE, 2021.
[107] Dang RH, Shi ZF, Wang LY, He ZT, Liu CJ, Chen QJ. Unbiased directed object attention graph for object navigation. In: Proc. of the
30th ACM Int’l Conf. on Multimedia. Lisboa: ACM, 2022. 3617–3627. [doi: 10.1145/3503161.3547852]
[108] Yadav K, Ramrakhya R, Majumdar A, Berges VP, Kuhar S, Batra D, Baevski A, Maksymets O. Offline visual representation learning
for embodied navigation. arXiv:2204.13226, 2022.
[109] Al-Halah Z, Ramakrishnan SK, Grauman K. Zero experience required: Plug & play modular transfer learning for semantic visual
navigation. In: Proc. of the 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022.
17010–17020. [doi: 10.1109/CVPR52688.2022.01652]
[110] Campari T, Lamanna L, Traverso P, Serafini L, Ballan L. Online learning of reusable abstract models for object goal navigation. In: