Page 348 - 《软件学报》2025年第4期
P. 348

1754                                                       软件学报  2025  年第  36  卷第  4  期


                      Proc. of the 30th Int’l Conf. on Neural Information Processing Systems. Barcelona: Curran Associates Inc., 2016. 1479–1487.
                 [88]  Ostrovski G, Bellemare MG, van den Oord A, Munos R. Count-based exploration with neural density models. In: Proc. of the 34th Int’l
                      Conf. Machine Learning. Sydney: IEEE, 2017. 2721–2730.
                 [89]  Tang HR, Houthooft R, Foote D, Stooke A, Chen X, Duan Y, Schulman J, De Turck F, Abbeel P. #Exploration: A study of count-based
                      exploration for deep reinforcement learning. In: Proc. of the 31st Int’l Conf. on Neural Information Processing Systems. Long Beach:
                      Curran Associates Inc., 2017. 2750–2759.
                 [90]  Pathak D, Agrawal P, Efros AA, Darrell T. Curiosity-driven exploration by self-supervised prediction. In: Proc. of the 34th Int’l Conf.
                      on Machine Learning. Sydney: JMLR, 2017. 2778–2787.
                 [91]  Burda Y, Edwards H, Pathak D, Storkey A, Darrell T, Efros AA. Large-scale study of curiosity-driven learning. In: Proc. of the 7th Int’l
                      Conf. on Learning Representations. New Orleans: ICLR, 2019.
                 [92]  Pathak D, Gandhi D, Gupta A. Self-supervised exploration via disagreement. In: Proc. of the 36th Int’l Conf. on Machine Learning.
                      Long Beach: PMLR, 2019. 5062–5071.
                 [93]  Chen T, Gupta S, Gupta A. Learning exploration policies for navigation. In: Proc. of the 7th Int’l Conf. on Learning Representations.
                      New Orleans: ICLR, 2019.
                 [94]  Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, Viola F, Green T, Back T, Natsev P, Suleyman M, Zisserman
                      A. The kinetics human action video dataset. arXiv:1705.06950, 2017.
                 [95]  Ramakrishnan SK, Jayaraman D, Grauman K. Emergence of exploratory look-around behaviors through active observation completion.
                      Science Robotics, 2019, 4(30): eaaw6326. [doi: 10.1126/scirobotics.aaw6326]
                 [96]  Jayaraman D, Grauman K. Learning to look around: Intelligently exploring unseen environments for unknown tasks. In: Proc. of the
                      2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 1238–1247. [doi: 10.1109/CVPR.
                      2018.00135]
                 [97]  Isola P, Zhu JY, Zhou TH, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proc. of the 2017 IEEE
                      Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5967–5976. [doi: 10.1109/CVPR.2017.632]
                 [98]  Cassandra AR, Kaelbling LP, Kurien JA. Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In: Proc. of
                      the 1996 IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems. Osaka: IEEE, 1996. 963–972. [doi: 10.1109/IROS.1996.571080]
                 [99]  Burgard W, Stachniss C, Grisetti G. Information gain-based exploration using rao-blackwellized particle filters. In: Proc. of the 2005 Int’l
                      Conf. on Robotics: Science and Systems. Cambridge: The MIT Press, 2005. 65–72.
                 [100]  Sun Y, Gomez F, Schmidhuber J. Planning to be surprised: Optimal Bayesian exploration in dynamic environments. In: Proc. of the 4th
                      Int’l Conf. on Artificial General Intelligence. Mountain View: Springer, 2011. 41–51. [doi: 10.1007/978-3-642-22887-2_5]
                 [101] 123–130. [doi: 10.1109/RO-MAN50785.2021.9515530]
                      Raileanu R, Rocktäschel. RIDE: Rewarding impact-driven exploration for procedurally-generated environments. In: Proc. of the 8th Int’l
                      Conf. on Learning Representations. Addis Ababa: ICLR, 2020.
                 [102]  Bigazzi R, Landi F, Cascianelli S, Baraldi L, Cornia M, Cucchiara R. Focus on impact: Indoor exploration with intrinsic motivation.
                      IEEE Robotics and Automation Letters, 2022, 7(2): 2985–2992. [doi: 10.1109/LRA.2022.3145971]
                 [103]  Wijmans E, Kadian A, Morcos A, Lee S, Essa I, Parikh D, Savva M, Batra D. DD-PPO: Learning near-perfect pointgoal navigators from
                      2.5 billion frames. In: Proc. of the 8th Int’l Conf. on Learning Representations. Addis Ababa: ICLR, 2020.
                 [104]  Li JC, Wang X, Tang SL, Shi HZ, Wu F, Zhuang YT, Wang WY. Unsupervised reinforcement learning of transferable meta-skills for
                      embodied  navigation.  In:  Proc.  of  the  2020  IEEE/CVF  Conf.  on  Computer  Vision  and  Pattern  Recognition.  Seattle:  IEEE,  2020.
                      12120–12129. [doi: 10.1109/CVPR42600.2020.01214]
                 [105]  Zeng KH, Weihs L, Farhadi A, Mottaghi R. Pushing it out of the way: Interactive visual navigation. In: Proc. of the 2021 IEEE/CVF
                      Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 9863–9872. [doi: 10.1109/CVPR46437.2021.00974]
                 [106]  Kumar G, Shankar NS, Didwania H, Roychoudhury RD, Bhowmick B, Krishna KM. GCExp: Goal-conditioned exploration for object
                      goal  navigation.  In:  Proc.  of  the  30th  IEEE  Int’l  Conf.  on  Robot  &  Human  Interactive  Communication.  Vancouver:  IEEE,  2021.

                 [107]  Dang RH, Shi ZF, Wang LY, He ZT, Liu CJ, Chen QJ. Unbiased directed object attention graph for object navigation. In: Proc. of the
                      30th ACM Int’l Conf. on Multimedia. Lisboa: ACM, 2022. 3617–3627. [doi: 10.1145/3503161.3547852]
                 [108]  Yadav K, Ramrakhya R, Majumdar A, Berges VP, Kuhar S, Batra D, Baevski A, Maksymets O. Offline visual representation learning
                      for embodied navigation. arXiv:2204.13226, 2022.
                 [109]  Al-Halah  Z,  Ramakrishnan  SK,  Grauman  K.  Zero  experience  required:  Plug  &  play  modular  transfer  learning  for  semantic  visual
                      navigation.  In:  Proc.  of  the  2022  IEEE/CVF  Conf.  on  Computer  Vision  and  Pattern  Recognition.  New  Orleans:  IEEE,  2022.
                      17010–17020. [doi: 10.1109/CVPR52688.2022.01652]
                 [110]  Campari T, Lamanna L, Traverso P, Serafini L, Ballan L. Online learning of reusable abstract models for object goal navigation. In:
   343   344   345   346   347   348   349   350   351   352   353