Page 346 - 《软件学报》2025年第4期
P. 346

1752                                                       软件学报  2025  年第  36  卷第  4  期


                 [43]  Mousavian A, Toshev A, Fišer M, Košecká J, Wahid A, Davidson J. Visual representations for semantic target driven navigation. In:
                      Proc. of the 2019 Int’l Conf. on Robotics and Automation. Montreal: IEEE, 2019. 8846–8852. [doi: 10.1109/ICRA.2019.8793493]
                 [44]  Wu Y, Wu YX, Tamar A, Russell S, Gkioxari G, Tian YD. Bayesian relational memory for semantic visual navigation. In: Proc. of the
                      2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 2769–2779. [doi: 10.1109/ICCV.2019.00286]
                 [45]  Chaplot DS, Gandhi D, Gupta A, Salakhutdinov R. Object goal navigation using goal-oriented semantic exploration. In: Proc. of the
                      34th Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 357.
                 [46]  Maksymets O, Cartillier V, Gokaslan A, Wijmans E, Galuba W, Lee S, Batra D. THDA: Treasure hunt data augmentation for semantic
                      navigation.  In:  Proc.  of  the  2021  IEEE/CVF  Int’l  Conf.  on  Computer  Vision.  Montreal:  IEEE,  2021.  15354–15363.  [doi:  10.1109/
                      ICCV48922.2021.01509]
                 [47]  Deitke  M,  Vander  Bilt  E,  Herrasti  A,  Weihs  L,  Salvador  J,  Ehsani  K,  Han  W,  Kolve  E,  Farhadi  A,  Kembhavi  A,  Mottaghi  R.
                      ProcTHOR: Large-scale embodied AI using procedural generation. In: Proc. of the 36th Int’l Conf. on Neural Information Processing
                      Systems. New Orleans: Curran Associates Inc., 2022. 433.
                 [48]  Zhou K, Zhang HY, Li F. TransNav: Spatial sequential Transformer network for visual navigation. Journal of Computational Design and
                      Engineering, 2022, 9(5): 1866–1878. [doi: 10.1093/jcde/qwac084]
                 [49]  Li F, Guo C, Zhang HY, Luo BH. Context vector-based visual mapless navigation in indoor using hierarchical semantic information and
                      meta-learning. Complex & Intelligent Systems, 2023, 9(2): 2031–2041. [doi: 10.1007/s40747-022-00902-7]

                 [50]  Yin  J,  Zhang  ZD,  Gao  YH,  Yang  ZW,  Li  L,  Xiao  M,  Sun  YQ,  Yan  CG.  Survey  on  vision-language  pre-training.  Ruan  Jian  Xue
                      Bao/Journal of Software, 2023, 34(5): 2000–2023 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6774.htm [doi:
                      10.13328/j.cnki.jos.006774]
                 [51]  Du PF, Li XY, Gao YL. Survey on multimodal visual language representation learning. Ruan Jian Xue Bao/Journal of Software, 2021,
                      32(2): 327–348 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6125.htm [doi: 10.13328/j.cnki.jos.006125]
                 [52]  Gadre SY, Wortsman M, Ilharco G, Schmidt L, Song SR. CoWs on pasture: Baselines and benchmarks for language-driven zero-shot
                      object  navigation.  In:  Proc.  of  the  2023  IEEE/CVF  Conf.  on  Computer  Vision  and  Pattern  Recognition.  Vancouver:  IEEE,  2023.
                      23171–23181. [doi: 10.1109/CVPR52729.2023.02219]
                 [53]  Majumdar  A,  Aggarwal  G,  Devnani  B,  Hoffman  J,  Batra  D.  ZSON:  Zero-shot  object-goal  navigation  using  multimodal  goal
                      embeddings. In: Proc. of the 36th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022.
                      2343.
                 [54]  Ramakrishnan SK, Jayaraman D, Grauman K. An exploration of embodied visual exploration. Int’l Journal of Computer Vision, 2021,
                      129(5): 1616–1649. [doi: 10.1007/s11263-021-01437-z]
                 [55]  Zhang TY, Hu XG, Xiao J, Zhang GF. A survey of visual navigation: From geometry to embodied AI. Engineering Applications of
                      Artificial Intelligence, 2022, 114: 105036. [doi: 10.1016/j.engappai.2022.105036]
                 [56]  Duan JF, Yu S, Tan HL, Zhu HY, Tan C. A survey of embodied AI: From simulators to research tasks. IEEE Trans. on Emerging Topics
                      in Computational Intelligence, 2022, 6(2): 230–244. [doi: 10.1109/TETCI.2022.3141105]
                 [57]  Gu J, Stefani E, Wu Q, Thomason J, Wang X. Vision-and-language navigation: A survey of tasks, methods, and future directions. In:
                      Proc.  of  the  60th  Annual  Meeting  of  the  Association  for  Computational  Linguistics  (Vol.  1:  Long  Papers).  Dublin:  ACL,  2022.
                      7606–7623. [doi: 10.18653/v1/2022.acl-long.524]
                 [58]  Cao C, Zhu H, Ren Z, Choset H, Zhang J. Representation granularity enables time-efficient autonomous exploration in large, complex
                      worlds. Science Robotics, 2023, 8(80): eadf0970. [doi: 10.1126/scirobotics.adf0970]
                 [59]  Garaffa LC, Basso M, Konzen AA, de Freitas EP. Reinforcement learning for mobile robotics exploration: A survey. IEEE Trans. on
                      Neural Networks and Learning Systems, 2023, 34(8): 3796–3810. [doi: 10.1109/TNNLS.2021.3124466]
                 [60]  Wang L, Qi Y, He BB, Zhang YJ, Xu YC. Survey of autonomous exploration algorithms for robots. Journal of Computer Applications,
                      2023, 43(S1): 314–322 (in Chinese with English abstract). [doi: 10.11772/j.issn.1001-9081.2022111706]
                 [61]  Zhang SY, Zhang XB, Yuan J, Fang YC. A survey on coverage and exploration path planning with multi-rotor micro aerial vehicles.
                      Control and Decision, 2022, 37(3): 513–529 (in Chinese with English abstract). [doi: 10.13195/j.kzyjc.2021.1751]
                 [62]  Fang K, Toshev A, Fei-Fei L, Savarese S. Scene memory Transformer for embodied agents in long-horizon tasks. In: Proc. of the 2019
                      IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 538–547. [doi: 10.1109/CVPR.2019.00063]
                 [63]  Fortunato M, Tan M, Faulkner R, Hansen S, Badia AP, Buttimore G, Deck C, Leibo JZ, Blundell C. Generalization of reinforcement
                      learners with working and episodic memory. In: Proc. of the 33rd Int’l Conf. on Neural Information Processing Systems. Vancouver:
                      Curran Associates Inc., 2019. 1117.
                 [64]  Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the
                      31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
   341   342   343   344   345   346   347   348   349   350   351