Page 344 - 《软件学报》2025年第4期
P. 344

1750                                                       软件学报  2025  年第  36  卷第  4  期


                 References:
                  [1]  Deitke M, Batra D, Bisk Y, et al. Retrospectives on the embodied AI workshop. arXiv:2210.06849, 2022.
                  [2]  Liu  HP,  Guo  D,  Sun  FC,  Zhang  XY.  Morphology-based  embodied  intelligence:  Historical  retrospect  and  research  progress.  Acta
                      Automatica Sinica, 2023, 49(6): 1131–1154 (in Chinese with English abstract). [doi: 10.16383/j.aas.c220564]
                  [3]  Sima SL, Huang Y, He KJ, An D, Yuan H, Wang L. Recent advances in vision-and-language navigation. Acta Automatica Sinica, 2023,
                      49(1): 1–14 (in Chinese with English abstract). [doi: 10.16383/j.aas.c210352]
                  [4]  Chang A, Dai A, Funkhouser T, Halber M, Niebner M, Savva M, Song SR, Zeng A, Zhang YD. Matterport3D: Learning from RGB-D
                      data in indoor environments. In: Proc. of the 2017 Int’l Conf. on 3D Vision (3DV). Qingdao: IEEE, 2017. 667−676. [doi: 10.1109/
                      3DV.2017.00081]
                  [5]  Xia F, Zamir AR, He ZY, Sax A, Malik J, Savarese S. Gibson env: Real-world perception for embodied agents. In: Proc. of the 2018
                      IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 9068–9079. [doi: 10.1109/CVPR.2018.
                      00945]
                  [6]  Ramakrishnan SK, Gokaslan A, Wijmans E, Maksymets O, Clegg A, Turner J, Undersander E, Galuba W, Westbury A, Chang A, Savva
                      M, Zhao YL, Batra D. Habitat-Matterport 3D dataset (HM3D): 1 000 large-scale 3D environments for embodied AI. In: Proc. of the
                      37th Int’l Conf. on Neural Information Processing Systems. NIPS, 2021.

                  [7]  Kolve E, Mottaghi R, Han W, VanderBilt E, Weihs L, Herrasti A, Deitke M, Ehsani K, Gordon D, Zhu YK, Kembhavi A, Gupta A,
                      Farhadi A. AI2-THOR: An interactive 3D environment for visual AI. arXiv:1712.05474, 2017.
                  [8]  Shen BK, Xia F, Li CS, Martín-Martín R, Fan LX, Wang GZ, Pérez-D’Arpino C, Buch S, Srivastava S, Tchapmi L, Tchapmi M, Vainio
                      K, Wong J, Fei-Fei L, Savarese S. iGibson 1.0: A simulation environment for interactive tasks in large realistic scenes. In: Proc. of the
                      2021  IEEE/RSJ  Int’l  Conf.  on  Intelligent  Robots  and  Systems.  Prague:  IEEE,  2021.  7520–7527.  [doi:  10.1109/IROS51168.2021.
                      9636667]
                  [9]  Li CS, Xia F, Martín-Martín R, Lingelbach M, Srivastava S, Shen BK, Vainio KE, Gokmen C, Dharan G, Jain T, Kurenkov A, Liu KR,
                      Gweon H, Wu JJ, Fei-Fei L, Savares S. iGibson 2.0: Object-centric simulation for robot learning of everyday household tasks. In: Proc.
                      of the 5th Conf. on Robot Learning. London: PMLR, 2022. 455–465.
                 [10]  Savva M, Kadian A, Maksymets O, Savva M, Kadian A, Maksymets O, Zhao YL, Wijmans E, Jain B, Straub J, Liu J, Koltun V, Malik
                      J, Parikh D, Batra Dhruv. Habitat: A platform for embodied AI research. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer
                      Vision. Seoul: IEEE, 2019. 9338–9346. [doi: 10.1109/ICCV.2019.00943]
                 [11]  Szot A, Clegg A, Undersander E, Wijmans E, Zhao YL, Turner J, Maestre N, Mukadam M, Chaplot D, Maksymets O, Gokaslan A,
                      Vondrus  V,  Dharur  S,  Meier  F,  Galuba  W,  Chang  A,  Kira  Z,  Koltun  V,  Malik  J,  Savva  M,  Batra  D.  Habitat  2.0:  Training  home
                      assistants to rearrange their habitat. In: Proc. of the 35th Int’l Conf. on Neural Information Processing Systems. Curran Associates Inc.,
                      2021. 20.
                 [12]  Batra D, Gokaslan A, Kembhavi A, Maksymets O, Mottaghi R, Savva M, Toshev A, Wijmans E. ObjectNav revisited: On evaluation of
                      embodied agents navigating to objects. arXiv:2006.13171, 2020.
                 [13]  Weihs L, Deitke M, Kembhavi A, Mottaghi R. Visual room rearrangement. In: Proc. of the 2021 IEEE/CVF Conf. on Computer Vision
                      and Pattern Recognition. Nashville: IEEE, 2021. 5918–5927. [doi: 10.1109/CVPR46437.2021.00586]
                 [14]  Ramrakhya R, Undersander E, Batra D, Das A. Habitat-Web: Learning embodied object-search strategies from human demonstrations at
                      scale. In: Proc. of the 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 5163–5173. [doi:
                      10.1109/CVPR52688.2022.00511]
                 [15]  Ramrakhya R, Batra D, Wijmans E, Das A. PIRLNav: Pretraining with imitation and RL finetuning for ObjectNav. In: Proc. of the 2023
                      IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023. 17896–17906. [doi: 10.1109/CVPR52729.2023.
                      01716]
                 [16]  Dang RH, Chen L, Wang LY, He ZT, Liu CJ, Chen QJ. Multiple thinking achieving meta-ability decoupling for object navigation. In:
                      Proc. of the 40th Int’l Conf. on Machine Learning. Honolulu: PMLR, 2023. 6855–6872.
                 [17]  Gervet T, Chintala S, Batra D, Malik J, Chaplot DS. Navigating to objects in the real world. Science Robotics, 2023, 8(79): eadf6991.
                      [doi: 10.1126/scirobotics.adf6991]
                 [18]  Liang YQ, Chen BY, Song SR. SSCNav: Confidence-aware semantic scene completion for visual semantic navigation. In: Proc. of the
                      2021 IEEE Int’l Conf. on Robotics and Automation. Xi’an: IEEE, 2021. 13194–13200. [doi: 10.1109/ICRA48506.2021.9560925]
                 [19]  Georgakis G, Bucher B, Schmeckpeper K, Singh S, Daniilidis K. Learning to map for active semantic goal navigation. In: Proc. of the
                      10th Int’l Conf. on Learning Representations. ICLR, 2022.
                 [20]  Ramakrishnan SK, Chaplot DS, Al-Halah Z, Malik J, Grauman K. PONI: Potential functions for objectgoal navigation with interaction-
   339   340   341   342   343   344   345   346   347   348   349