Page 120 - 《软件学报》2025年第4期
P. 120
1526 软件学报 2025 年第 36 卷第 4 期
[121] Csallner C, Tillmann N, Smaragdakis Y. DySy: Dynamic symbolic execution for invariant inference. In: Proc. of the 30th Int’l Conf. on
Software Engineering. Leipzig: ACM, 2008. 281–290. [doi: 10.1145/1368088.1368127]
[122] Molina F, Ponzio P, Aguirre N, Frias M. EvoSpex: An evolutionary algorithm for learning postconditions. In: Proc. of the 43rd
IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Madrid: IEEE, 2021. 1223–1235. [doi: 10.1109/ICSE43902.2021.00112]
[123] Palomba F, Di Nucci D, Panichella A, Oliveto R, De Lucia A. On the diffusion of test smells in automatically generated test code: An
empirical study. In: Proc. of the 9th Int’l Workshop on Search-based Software Testing. Austin: ACM, 2016. 5–14. [doi: 10.1145/
2897010.2897016]
[124] Watson C, Tufano M, Moran K, Bavota G, Poshyvanyk D. On learning meaningful assert statements for unit test cases. In: Proc. of the
42nd ACM/IEEE Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 1398–1409. [doi: 10.1145/3377811.3380429]
[125] Mastropaolo A, Scalabrino S, Cooper N, Palacio DN, Poshyvanyk D, Oliveto R, Bavota G. Studying the usage of text-to-text transfer
Transformer to support code-related tasks. In: Proc. of the 43rd IEEE/ACM Int’l Conf. on Software Engineering. Madrid: IEEE, 2021.
336–347. [doi: 10.1109/ICSE43902.2021.00041]
[126] Mastropaolo A, Cooper N, Palacio DN, Scalabrino S, Poshyvanyk D, Oliveto R, Bavota G. Using transfer learning for code-related
tasks. IEEE Trans. on Software Engineering, 2023, 49(4): 1580–1598. [doi: 10.1109/TSE.2022.3183297]
[127] Yu H, Lou YL, Sun K, Ran DZ, Xie T, Hao D, Li Y, Li G, Wang QX. Automated assertion generation via information retrieval and its
integration with deep learning. In: Proc. of the 44th Int’l Conf. on Software Engineering. Pittsburgh: ACM, 2022. 163–174. [doi: 10.
618(7964): 257–263. [doi: 10.1038/s41586-023-06004-9]
1145/3510003.3510149]
[128] Nie PY, Banerjee R, Li JJ, Mooney RJ, Gligoric M. Learning deep semantics for test completion. In: Proc. of the 45th IEEE/ACM Int’l
Conf. on Software Engineering. Melbourne: IEEE, 2023. 2111–2123. [doi: 10.1109/ICSE48619.2023.00178]
[129] Tufano M, Drain D, Svyatkovskiy A, Sundaresan N. Generating accurate assert statements for unit test cases using pretrained
Transformers. In: Proc. of the 3rd ACM/IEEE Int’l Conf. on Automation of Software Test. Pittsburgh: ACM, 2022. 54–64. [doi: 10.
1145/3524481.3527220]
[130] Dinella E, Ryan G, Mytkowicz T, Lahiri SK. TOGA: A neural method for test oracle generation. In: Proc. of the 44th Int’l Conf. on
Software Engineering. Pittsburgh: ACM, 2022. 2130–2141. [doi: 10.1145/3510003.3510141]
[131] Liu ZX, Liu K, Xia X, Yang XH. Towards more realistic evaluation for neural test oracle generation. In: Proc. of the 32nd ACM
SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 589–600. [doi: 10.1145/3597926.3598080]
[132] Tufano M, Drain D, Svyatkovskiy A, Deng SK, Sundaresan N. Unit test case generation with Transformers and focal context.
aarXiv:2009.05617, 2021.
[133] Panichella A, Panichella S, Fraser G, Sawant AA, Hellendoorn VJ. Revisiting test smells in automatically generated tests: Limitations,
pitfalls, and opportunities. In: Proc. of the 2020 IEEE Int’l Conf. on Software Maintenance and Evolution (ICSME). Adelaide: IEEE,
2020. 523–533. [doi: 10.1109/ICSME46990.2020.00056]
[134] Lemieux C, Inala JP, Lahiri SK, Sen S. CodaMosa: Escaping coverage plateaus in test generation with pre-trained large language
models. In: Proc. of the 45th IEEE/ACM Int’l Conf. on Software Engineering. Melbourne: IEEE, 2023. 919–931. [doi: 10.1109/
ICSE48619.2023.00085]
[135] Schäfer M, Nadi S, Eghbali A, Tip F. An empirical evaluation of using large language models for automated unit test generation.
arXiv:2302.06527, 2023.
[136] Xie ZK, Chen YH, Zhi C, Deng SG, Yin JW. ChatUniTest: A ChatGPT-based automated unit test generation tool. arXiv:2305.04764,
2024.
[137] Chen B, Zhang FJ, Nguyen A, Zan DG, Lin ZQ, Lou JG, Chen WZ. CodeT: Code generation with generated tests. arXiv:2207.10397,
2022.
[138] Lahiri SK, Fakhoury S, Naik A, Sakkas G, Chakraborty S, Musuvathi M, Choudhury P, Von Veh C, Inala JP, Wang CL, Gao JF.
Interactive code generation via test-driven user-intent formalization. arXiv:2208.05950, 2023.
[139] Mankowitz DJ, Michi A, Zhernov A, et al. Faster sorting algorithms discovered using deep reinforcement learning. Nature, 2023,
[140] GPT-4 “discovered” the same sorting algorithm as alphadev by removing “mov s p” | hacker news, 2024. https://news.ycombinator.com/
item?id=36247549
[141] The New York Times. A smarter APP is watching your wallet. 2023. https://www.nytimes.com/2021/03/09/business/apps-personal-
finance-budget.html
[142] Webster RW, Hess D. A real-time software controller for a digital model railroad system. In: Proc. of the 1993 IEEE Workshop on Real-
time Applications. New York: IEEE, 1993. 126–130. [doi: 10.1109/RTA.1993.263102]
[143] Brown D. Hospitals turn to artificial intelligence to help with an age-old problem: Doctors’ poor bedside manners. Washington Post,