Page 117 - 《软件学报》2025年第4期
P. 117

香佳宏 等: 大模型在软件缺陷检测与修复的应用发展综述                                                     1523


                 [47]  Yuan ZQ, Lou YL, Liu MW, Ding SJ, Wang KX, Chen YX, Peng X. No more manual tests? Evaluating and improving ChatGPT for
                      unit test generation. arXiv:2305.04207, 2024.
                 [48]  Wei J, Wang XZ, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E, Le QV, Zhou D. Chain-of-thought prompting elicits reasoning in
                      large language models. arXiv:2201.11903, 2023.
                 [49]  Fakhoury S, Chakraborty S, Musuvathi M, Lahiri SK. Towards generating functionally correct code edits from natural language issue
                      descriptions. arXiv:2304.03816, 2023.
                 [50]  Deng YL, Xia CS, Peng HR, Yang CY, Zhang LM. Large language models are zero-shot fuzzers: Fuzzing deep-learning libraries via
                      large  language  models.  In:  Proc.  of  the  32nd  ACM  SIGSOFT  Int’l  Symp.  on  Software  Testing  and  Analysis.  Seattle:  ACM,  2023.
                      423–435. [doi: 10.1145/3597926.3598067]
                 [51]  Prenner JA, Robbes R. Automatic program repair with OpenAI’s codex: Evaluating QuixBugs. arXiv:2111.03922, 2021.
                 [52]  Xia CS, Wei YX, Zhang LM. Practical program repair in the era of large pre-trained language models. arXiv:2210.14179, 2022.
                 [53]  Döderlein  JB,  Acher  M,  Khelladi  DE,  Combemale  B.  Piloting  copilot  and  codex:  Hot  temperature,  cold  prompts,  or  black  magic?
                      arXiv:2210.14699, 2023.
                 [54]  Pudari R, Ernst NA. From copilot to pilot: Towards ai supported software development. arXiv:2303.04142, 2023.
                 [55]  Ziegler DM, Stiennon N, Wu J, Brown TB, Radford A, Amodei D, Christiano P, Irving G. Fine-tuning language models from human

                      preferences. arXiv:1909.08593, 2020.
                 [56]  Sobania D, Briesch M, Hanna C, Petke J. An analysis of the automatic bug fixing performance of ChatGPT. arXiv:2301.08653, 2023.
                 [57]  Xia CS, Zhang LM. Keep the conversation going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv:2304.00385, 2023.
                 [58]  Wang JJ, Huang YC, Chen CY, Liu Z, Wang S, Wang Q. Software testing with large language models: Survey, landscape, and vision.
                      arXiv:2307.07221, 2024.
                 [59]  Sun Y, Chen YH, Wang XG, Tang XO. Deep learning face representation by joint identification-verification. In: Proc. of the 27th Int’l
                      Conf. on Neural Information Processing Systems—Vol. 2. Montreal: MIT Press, 2014. 1988–1996.
                 [60]  Julian KD, Lopez J, Brush JS, Owen MP, Kochenderfer MJ. Policy compression for aircraft collision avoidance systems. In: Proc. of the
                      35th IEEE/AIAA Digital Avionics Systems Conf. (DASC). Sacramento: IEEE, 2016. 1–10. [doi: 10.1109/DASC.2016.7778091]
                 [61]  Liu SQ, Liu SD, Cai WD, Pujol S, Kikinis R, Feng DG. Early diagnosis of Alzheimer’s disease with deep learning. In: Proc. of the 11th
                      IEEE Int’l Symp. on Biomedical Imaging (ISBI). Beijing: IEEE, 2014. 1015–1018. [doi: 10.1109/ISBI.2014.6868045]
                 [62]  Chen CY, Seff A, Kornhauser A, Xiao JX. DeepDriving: Learning affordance for direct perception in autonomous driving. In: Proc. of
                      the 2015 IEEE Int’l Conf. on Computer Vision (ICCV). Santiago: IEEE, 2015. 2722–2730. [doi: 10.1109/ICCV.2015.312]
                 [63]  ABC7.com. Uber gives up testing of self-driving cars in California in wake of fatal Arizona crash. 2018. https://abc7.com/self-driving-
                      uber-crash-video-pedestrian-hit-by-car-autonomous-vehicles/3269690/
                 [64]  Self-driving car. Wikipedia, 2023. https://en.wikipedia.org/wiki/Self-driving_car
                 [65]  Pham HV, Lutellier T, Qi WZ, Tan L. CRADLE: Cross-backend validation to detect and localize bugs in deep learning libraries. In:
                      Proc.  of  the  41st  IEEE/ACM  Int’l  Conf.  on  Software  Engineering  (ICSE).  Montreal:  IEEE,  2019.  1027–1038.  [doi:  10.1109/ICSE.
                      2019.00107]
                 [66]  Wang Z, Yan M, Chen JJ, Liu S, Zhang DD. Deep learning library testing via effective model generation. In: Proc. of the 28th ACM
                      Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. ACM, 2020. 788–799.
                      [doi: 10.1145/3368089.3409761]
                 [67]  Wei AJ, Deng YL, Yang CY, Zhang LM. Free lunch for testing: Fuzzing deep-learning libraries from open source. In: Proc. of the 44th
                      Int’l Conf. on Software Engineering. Pittsburgh: ACM, 2022. 995–1007. [doi: 10.1145/3510003.3510041]
                 [68]  Guo QY, Xie XF, Li Y, Zhang XY, Liu Y, Li XH, Shen C. Audee: Automated testing for deep learning frameworks. In: Proc. of the
                      35th IEEE/ACM Int’l Conf. on Automated Software Engineering. ACM, 2021. 486–498. [doi: 10.1145/3324884.3416571]
                 [69]  Gu JZ, Luo XC, Zhou YF, Wang X. Muffin: Testing deep learning libraries via neural architecture fuzzing. In: Proc. of the 44th Int’l
                      Conf. on Software Engineering. Pittsburgh: ACM, 2022. 1418–1430. [doi: 10.1145/3510003.3510092]
                 [70]  Xie DN, Li YT, Kim M, Pham HV, Tan L, Zhang XY, Godfrey MW. DocTer: Documentation-guided fuzzing for testing deep learning
                      API functions. In: Proc. of the 31st ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. ACM, 2022. 176–188. [doi: 10.1145/
                      3533767.3534220]
                 [71]  Deng YL, Yang CY, Wei AJ, Zhang LM. Fuzzing deep-learning libraries via automated relational API inference. In: Proc. of the 30th
                      ACM Joint European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Singapore: ACM, 2022.
                      44–56. [doi: 10.1145/3540250.3549085]
                 [72]  APP store (apple). Wikipedia, 2023. https://en.wikipedia.org/wiki/App_Store_(Apple)
   112   113   114   115   116   117   118   119   120   121   122