Page 117 - 《软件学报》2025年第4期
P. 117
香佳宏 等: 大模型在软件缺陷检测与修复的应用发展综述 1523
[47] Yuan ZQ, Lou YL, Liu MW, Ding SJ, Wang KX, Chen YX, Peng X. No more manual tests? Evaluating and improving ChatGPT for
unit test generation. arXiv:2305.04207, 2024.
[48] Wei J, Wang XZ, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E, Le QV, Zhou D. Chain-of-thought prompting elicits reasoning in
large language models. arXiv:2201.11903, 2023.
[49] Fakhoury S, Chakraborty S, Musuvathi M, Lahiri SK. Towards generating functionally correct code edits from natural language issue
descriptions. arXiv:2304.03816, 2023.
[50] Deng YL, Xia CS, Peng HR, Yang CY, Zhang LM. Large language models are zero-shot fuzzers: Fuzzing deep-learning libraries via
large language models. In: Proc. of the 32nd ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023.
423–435. [doi: 10.1145/3597926.3598067]
[51] Prenner JA, Robbes R. Automatic program repair with OpenAI’s codex: Evaluating QuixBugs. arXiv:2111.03922, 2021.
[52] Xia CS, Wei YX, Zhang LM. Practical program repair in the era of large pre-trained language models. arXiv:2210.14179, 2022.
[53] Döderlein JB, Acher M, Khelladi DE, Combemale B. Piloting copilot and codex: Hot temperature, cold prompts, or black magic?
arXiv:2210.14699, 2023.
[54] Pudari R, Ernst NA. From copilot to pilot: Towards ai supported software development. arXiv:2303.04142, 2023.
[55] Ziegler DM, Stiennon N, Wu J, Brown TB, Radford A, Amodei D, Christiano P, Irving G. Fine-tuning language models from human
preferences. arXiv:1909.08593, 2020.
[56] Sobania D, Briesch M, Hanna C, Petke J. An analysis of the automatic bug fixing performance of ChatGPT. arXiv:2301.08653, 2023.
[57] Xia CS, Zhang LM. Keep the conversation going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv:2304.00385, 2023.
[58] Wang JJ, Huang YC, Chen CY, Liu Z, Wang S, Wang Q. Software testing with large language models: Survey, landscape, and vision.
arXiv:2307.07221, 2024.
[59] Sun Y, Chen YH, Wang XG, Tang XO. Deep learning face representation by joint identification-verification. In: Proc. of the 27th Int’l
Conf. on Neural Information Processing Systems—Vol. 2. Montreal: MIT Press, 2014. 1988–1996.
[60] Julian KD, Lopez J, Brush JS, Owen MP, Kochenderfer MJ. Policy compression for aircraft collision avoidance systems. In: Proc. of the
35th IEEE/AIAA Digital Avionics Systems Conf. (DASC). Sacramento: IEEE, 2016. 1–10. [doi: 10.1109/DASC.2016.7778091]
[61] Liu SQ, Liu SD, Cai WD, Pujol S, Kikinis R, Feng DG. Early diagnosis of Alzheimer’s disease with deep learning. In: Proc. of the 11th
IEEE Int’l Symp. on Biomedical Imaging (ISBI). Beijing: IEEE, 2014. 1015–1018. [doi: 10.1109/ISBI.2014.6868045]
[62] Chen CY, Seff A, Kornhauser A, Xiao JX. DeepDriving: Learning affordance for direct perception in autonomous driving. In: Proc. of
the 2015 IEEE Int’l Conf. on Computer Vision (ICCV). Santiago: IEEE, 2015. 2722–2730. [doi: 10.1109/ICCV.2015.312]
[63] ABC7.com. Uber gives up testing of self-driving cars in California in wake of fatal Arizona crash. 2018. https://abc7.com/self-driving-
uber-crash-video-pedestrian-hit-by-car-autonomous-vehicles/3269690/
[64] Self-driving car. Wikipedia, 2023. https://en.wikipedia.org/wiki/Self-driving_car
[65] Pham HV, Lutellier T, Qi WZ, Tan L. CRADLE: Cross-backend validation to detect and localize bugs in deep learning libraries. In:
Proc. of the 41st IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Montreal: IEEE, 2019. 1027–1038. [doi: 10.1109/ICSE.
2019.00107]
[66] Wang Z, Yan M, Chen JJ, Liu S, Zhang DD. Deep learning library testing via effective model generation. In: Proc. of the 28th ACM
Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. ACM, 2020. 788–799.
[doi: 10.1145/3368089.3409761]
[67] Wei AJ, Deng YL, Yang CY, Zhang LM. Free lunch for testing: Fuzzing deep-learning libraries from open source. In: Proc. of the 44th
Int’l Conf. on Software Engineering. Pittsburgh: ACM, 2022. 995–1007. [doi: 10.1145/3510003.3510041]
[68] Guo QY, Xie XF, Li Y, Zhang XY, Liu Y, Li XH, Shen C. Audee: Automated testing for deep learning frameworks. In: Proc. of the
35th IEEE/ACM Int’l Conf. on Automated Software Engineering. ACM, 2021. 486–498. [doi: 10.1145/3324884.3416571]
[69] Gu JZ, Luo XC, Zhou YF, Wang X. Muffin: Testing deep learning libraries via neural architecture fuzzing. In: Proc. of the 44th Int’l
Conf. on Software Engineering. Pittsburgh: ACM, 2022. 1418–1430. [doi: 10.1145/3510003.3510092]
[70] Xie DN, Li YT, Kim M, Pham HV, Tan L, Zhang XY, Godfrey MW. DocTer: Documentation-guided fuzzing for testing deep learning
API functions. In: Proc. of the 31st ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. ACM, 2022. 176–188. [doi: 10.1145/
3533767.3534220]
[71] Deng YL, Yang CY, Wei AJ, Zhang LM. Fuzzing deep-learning libraries via automated relational API inference. In: Proc. of the 30th
ACM Joint European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Singapore: ACM, 2022.
44–56. [doi: 10.1145/3540250.3549085]
[72] APP store (apple). Wikipedia, 2023. https://en.wikipedia.org/wiki/App_Store_(Apple)