Page 119 - 《软件学报》2025年第4期
P. 119

香佳宏 等: 大模型在软件缺陷检测与修复的应用发展综述                                                     1525


                 [95]  Li YC, Yang ZY, Guo Y, Chen XQ. Humanoid: A deep learning-based approach to automated black-box Android APP testing. In: Proc.
                      of the 34th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). San Diego: IEEE, 2019. 1070–1073. [doi: 10.1109/ASE.
                      2019.00104]
                 [96]  Pan MX, Huang A, Wang GX, Zhang T, Li XD. Reinforcement learning based curiosity-driven testing of Android applications. In: Proc.
                      of the 29th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. ACM, 2020. 153–164. [doi: 10.1145/3395363.3397354]
                 [97]  Peng C, Zhang Z, Lv ZW, Yang P. MUBot: Learning to test large-scale commercial Android APPs like a human. In: Proc. of the 2022
                      IEEE Int’l Conf. on Software Maintenance and Evolution (ICSME). Limassol: IEEE, 2022. 543–552. [doi: 10.1109/ICSME55016.2022.
                      00074]
                 [98]  Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY. Multimodal deep learning. In: Proc. of the 28th Int’l Conf. on Machine Learning.
                      Bellevue: Omnipress, 2011. 689–696.
                 [99]  YazdaniBanafsheDaragh F, Malek S. Deep GUI: Black-box GUI input generation with deep learning. In: Proc. of the 36th IEEE/ACM
                      Int’l Conf. on Automated Software Engineering (ASE). Melbourne: IEEE, 2021. 905–916. [doi: 10.1109/ASE51524.2021.9678778]
                 [100]  Liu Z, Chen CY, Wang JJ, Chen MZ, Wu BY, Che X, Wang DD, Wang Q. Chatting with GPT-3 for zero-shot human-like mobile
                      automated GUI testing. arXiv:2305.09434, 2023.
                 [101]  Liu P, Zhang XY, Pistoia M, Zheng YH, Marques M, Zeng LF. Automatic text input generation for mobile testing. In: Proc. of the 39th
                      IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Buenos Aires: IEEE, 2017. 643–653. [doi: 10.1109/ICSE.2017.65]
                 [102]  Liu Z, Chen CY, Wang JJ, Che X, Huang YK, Hu J, Wang Q. Fill in the blank: Context-aware automated text input generation for
                      mobile GUI testing. In: Proc. of the 45th IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Melbourne: IEEE, 2023. 1355–1367.
                      [doi: 10.1109/ICSE48619.2023.00119]
                 [103]  Wu TY, Deng X, Yan J, Zhang J. Analyses for specific defects in Android applications: A survey. Frontiers of Computer Science, 2019,
                      13(6): 1210–1227. [doi: 10.1007/s11704-018-7008-1]
                 [104]  Brown TB, Mann B, Ryder N, et al. Language models are few-shot learners. In: Proc. of the 34th Int’l Conf. on Neural Information
                      Processing Systems. Vancouver: Curran Associates Inc., 2020. 1877–1901.
                 [105]  Liu Z, Chen CY, Wang JJ, Chen MZ, Wu BY, Che X, Wang DD, Wang Q. Testing the limits: Unusual text inputs generation for mobile
                      APP crash detection with large language model. arXiv:2310.15657, 2023.
                 [106]  Linares-Vásquez M, Bernal-Cardenas C, Moran K, Poshyvanyk D. How do developers test Android applications? In: Proc. of the 2017
                      IEEE Int’l Conf. on Software Maintenance and Evolution (ICSME). Shanghai: IEEE, 2017. 613–622. [doi: 10.1109/ICSME.2017.47]
                 [107]  Yoon J, Feldt R, Yoo S. Autonomous large language model agents enabling intent-driven mobile GUI testing. arXiv:2311.08649, 2023.
                 [108]  Nass M, Alegroth E, Feldt R. Improving Web element localization by using a large language model. arXiv:2310.02046, 2023.
                 [109] IEEE, 2012. 178–188. [doi: 10.1109/ICSE.2012.6227195]
                      Wen H, Wang HM, Liu JX, Li YC. DroidBot-GPT: GPT-powered UI automation for Android. arXiv:2304.07061, 2024.
                 [110]  Almasi MM, Hemmati H, Fraser G, Arcuri A, Benefelds J. An industrial evaluation of unit test generation: Finding real faults in a
                      financial application. In: Proc. of the 39th IEEE/ACM Int’l Conf. on Software Engineering: Software Engineering in Practice Track.
                      Buenos Aires: IEEE, 2017. 263–272. [doi: 10.1109/ICSE-SEIP.2017.27]
                 [111]  Shore J, Warden S. The Art of Agile Development. 2nd ed., Sebastopol: O’Reilly Media, 2021.
                 [112]  Beck K. Extreme Programming Explained: Embrace Change. Boston: Addison-Wesley Longman Publishing Co. Inc., 1999.
                 [113]  Daka E, Fraser G. A survey on unit testing practices and problems. In: Proc. of the 25th IEEE Int’l Symp. on Software Reliability
                      Engineering. Naples: IEEE, 2014. 201–211. [doi: 10.1109/ISSRE.2014.11]
                 [114]  Daka E, Campos J, Fraser G, Dorn J, Weimer W. Modeling readability to improve unit tests. In: Proc. of the 10th Joint Meeting on
                      Foundations of Software Engineering. Bergamo: ACM, 2015. 107–118. [doi: 10.1145/2786805.2786838]
                 [115]  Lin Y, Ong YS, Sun J, Fraser G, Dong JS. Graph-based seed object synthesis for search-based unit testing. In: Proc. of the 29th ACM
                      Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Athens: ACM, 2021.
                      1068–1080. [doi: 10.1145/3468264.3468619]
                 [116]  Fraser G, Arcuri A. Sound empirical evidence in software testing. In: Proc. of the 34th Int’l Conf. on Software Engineering. Zurich:

                 [117]  Ernst MD. Randoop: Automatic unit test generation for Java. 2023. https://randoop.github.io/randoop/
                 [118]  Selakovic  M,  Pradel  M,  Karim  R,  Tip  F.  Test  generation  for  higher-order  functions  in  dynamic  languages.  Proc.  of  the  ACM  on
                      Programming Languages, 2018, 2: 161. [doi: 10.1145/3276531]
                 [119]  Arteca E, Harner S, Pradel M, Tip F. Nessie: Automatically testing JavaScript APIs with asynchronous callbacks. In: Proc. of the 44th
                      Int’l Conf. on Software Engineering. Pittsburgh: ACM, 2022. 1494–1505. [doi: 10.1145/3510003.3510106]
                 [120]  Ernst MD, Perkins JH, Guo PJ, McCamant S, Pacheco C, Tschantz MS, Xiao C. The Daikon system for dynamic detection of likely
                      invariants. Science of Computer Programming, 2007, 69(1–3): 35–45. [doi: 10.1016/j.scico.2007.01.015]
   114   115   116   117   118   119   120   121   122   123   124