Page 124 - 《软件学报》2025年第4期
P. 124

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2025,36(4):1530−1556 [doi: 10.13328/j.cnki.jos.007288] [CSTR: 32375.14.jos.007288]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                               *
                 深度学习在基于信息检索的缺陷定位中的应用综述

                 曹    帅  1,2 ,    牛菲菲  1,2 ,    李传艺  1,2 ,    陈俊洁  3 ,    刘    逵  4 ,    葛季栋  1,2 ,    骆    斌  1,2


                  (计算机软件新技术国家重点实验室        (南京大学), 江苏 南京 210093)
                 1
                 2
                  (南京大学 软件学院, 江苏 南京 210093)
                 3
                  (天津大学 智能与计算学部, 天津 300350)
                 4
                  (华为公司 软件工程应用技术实验室, 浙江 杭州 310007)
                 通信作者: 李传艺, E-mail: lcy@nju.edu.cn
                 摘 要: 缺陷自动定位方法可以极大程度减轻开发人员调试和维护软件程序的负担. 基于信息检索的缺陷定位方
                 法是广泛研究的缺陷自动定位方法之一, 并已取得了较好的成果. 随着深度学习的普及, 将深度学习应用于基于信
                 extraction  methods  employed  in  related  studies  are  summarized.  Finally,  this  study  summarizes  and  compares  the  most  advanced  bug
                 息检索的缺陷定位成为近年来的研究趋势之一. 系统梳理和总结了                      52  篇近年来将深度学习引入基于信息检索缺
                 陷定位的工作. 首先, 总结该类缺陷定位的数据集和评价指标, 接着从不同粒度和可迁移性分析了该类技术的定位
                 效果, 随后着重梳理了相关工作中信息编码表征方法和特征提取方法. 最后总结对比分析了各领域最先进的定位
                 方法, 并展望了使用深度学习的基于信息检索的缺陷定位方法的未来发展方向.
                 关键词: 深度学习; 缺陷定位; 信息检索; 特征编码; 代码表示
                 中图法分类号: TP311

                 中文引用格式: 曹帅, 牛菲菲, 李传艺, 陈俊洁, 刘逵, 葛季栋, 骆斌. 深度学习在基于信息检索的缺陷定位中的应用综述. 软件学
                 报, 2025, 36(4): 1530–1556. http://www.jos.org.cn/1000-9825/7288.htm
                 英文引用格式: Cao S, Niu FF, Li CY, Chen JJ, Liu K, Ge JD, Luo B. Survey on Deep Learning Applications in Information Retrieval-
                 based Bug Localization. Ruan Jian Xue Bao/Journal of Software, 2025, 36(4): 1530–1556 (in Chinese).  http://www.jos.org.cn/1000 -
                 9825/7288.htm
                 Survey on Deep Learning Applications in Information Retrieval-based Bug Localization
                                                1,2
                                    1,2
                                                             3
                         1,2
                                                                              1,2
                                                                    4
                 CAO Shuai , NIU Fei-Fei , LI Chuan-Yi , CHEN Jun-Jie , LIU Kui , GE Ji-Dong , LUO Bin 1,2
                 1
                 (State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210093, China)
                 2
                 (Software Institute, Nanjing University, Nanjing 210093, China)
                 3
                 (College of Intelligence and Computing, Tianjin University, Tianjin 300350, China)
                 4
                 (Software Engineering Application Technology Lab, Huawei Technologies Co. Ltd., Hangzhou 310007, China)
                 Abstract:  Automatic  bug  localization  technologies  can  significantly  alleviate  the  burden  of  debugging  and  maintaining  software  programs
                 for  developers.  As  a  widely  studied  automatic  bug  localization  technology,  information  retrieval-based  bug  localization  has  yielded
                 promising  performance  of  bug  localization.  In  recent  years,  the  utilization  of  deep  learning  for  information  retrieval-based  bug  localization
                 has emerged as a research trend due to the widespread adoption of deep learning. This study systematically categorizes and summarizes 52
                 studies  that  have  introduced  deep  learning  to  information  retrieval-based  bug  localization  in  recent  years.  Firstly,  a  summary  of  datasets
                 and evaluation indexes in this kind of bug localization is provided. Then, the localization performance of these techniques is analyzed from
                 the  perspectives  of  different  granularity  and  transportability.  Subsequently,  information  coding  characterization  methods  and  feature
                 localization  methods,  and  provides  insights  into  the  future  directions  of  utilizing  deep  learning  in  information  retrieval-based  bug
                 localization methods.
                 Key words:  deep learning; bug localization; information retrieval; feature embedding; code representation


                 *    基金项目: 国家重点研发计划  (2022YFF0711404); 江苏省自然科学基金  (BK20201250, BK20210279)
                  收稿时间: 2024-02-05; 修改时间: 2024-04-23, 2024-08-07; 采用时间: 2024-09-03; jos 在线出版时间: 2025-01-16
                  CNKI 网络首发时间: 2025-01-17
   119   120   121   122   123   124   125   126   127   128   129