Page 384 - 《软件学报》2024年第4期
P. 384

1962                                                       软件学报  2024  年第  35  卷第  4  期


                 角多层次的分析和处理, 研究划分序乘积空间的实际应用.

                 References:
                  [1]  Yao YY. A triarchic theory of granular computing. Granular Computing, 2016, 1(2): 145–157. [doi: 10.1007/s41066-015-0011-0]
                  [2]  Pedrycz  W,  Skowron  A,  Kreinovich  V.  Handbook  of  Granular  Computing.  West  Sussex:  John  Wiley  &  Sons,  2008.  [doi:  10.1002/
                     9780470724163]
                  [3]  Qian YH, Liang JY, Yao YY, Dang CY. MGRS: A multi-granulation rough set. Information Sciences, 2010, 180(6): 949–970. [doi: 10.
                     1016/j.ins.2009.11.023]
                  [4]  Qian YH, Liang JY, Dang CY. Incomplete multigranulation rough set. IEEE Trans. on Systems, Man, and Cybernetics—Part A: Systems
                     and Humans, 2010, 40(2): 420–431. [doi: 10.1109/TSMCA.2009.2035436]
                  [5]  Qian YH, Zhang H, Sang YL, Liang JY. Multigranulation decision-theoretic rough sets. Int’l Journal of Approximate Reasoning, 2014,
                     55(1): 225–237. [doi: 10.1016/j.ijar.2013.03.004]
                  [6]  Khan MA, Banerjee M. Formal reasoning with rough sets in multiple-source approximation systems. Int’l Journal of Approximate Rea-
                     soning, 2008, 49(2): 466–477. [doi: 10.1016/j.ijar.2008.04.005]
                  [7]  Sang BB, Guo YT, Shi DR, Xu WH. Decision-theoretic rough set model of multi-source decision systems. Int’l Journal of Machine Learning
                     and Cybernetics, 2018, 9(11): 1941–1954. [doi: 10.1007/s13042-017-0729-x]
                  [8]  Chen YH, Yao YY. A multiview approach for intelligent data analysis based on data operators. Information Sciences, 2008, 178(1): 1–20.
                     [doi: 10.1016/j.ins.2007.08.011]
                  [9]  Yao YY. Information granulation and rough set approximation. Int’l Journal of Intelligent Systems, 2001, 16(1): 87–104. [doi: 10.1002/
                     1098-111X(200101)16:1<87::AID-INT7>3.0.CO;2-S]
                 [10]  Hong TP, Lin CE, Lin JH, Wang SL. Learning cross-level certain and possible rules by rough sets. Expert Systems with Applications,
                     2008, 34(3): 1698–1706. [doi: 10.1016/j.eswa.2007.01.038]
                 [11]  Feng QR, Miao DQ, Cheng Y. Hierarchical decision rules mining. Expert Systems with Applications, 2010, 37(3): 2081–2091. [doi: 10.
                     1016/j.eswa.2009.06.065]
                 [12]  Wu WZ, Leung Y. Theory and applications of granular labelled partitions in multi-scale decision tables. Information Sciences, 2011,
                     181(18): 3878–3897. [doi: 10.1016/j.ins.2011.04.047]
                 [13]  Wu WZ, Zhuang YB, Tan AH, Xu YH. Scale combinations in inconsistent generalized multi-scale decision systems. Pattern Recognition
                     and Artificial Intelligence, 2018, 31(6): 485–494 (in  Chinese  with  English  abstract). [doi: 10.16451/j.cnki.issn1003-6059.201806001]
                 [14]  Zheng JW, Wu WZ, Bao H, Tan AH. Evidence theory based optimal scale selection for multi-scale ordered decision systems. Int’l Journal
                     of Machine Learning and Cybernetics, 2022, 13(4): 1115–1129. [doi: 10.1007/s13042-021-01438-x]
                 [15]  Wu  WZ,  Qian  YH,  Li  TJ,  Gu  SM.  On  rule  acquisition  in  incomplete  multi-scale  decision  tables.  Information  Sciences,  2017,  378:
                     282–302. [doi: 10.1016/j.ins.2016.03.041]
                 [16]  Bao H, Wu WZ, Zheng JW, Li TJ. Entropy based optimal scale combination selection for generalized multi-scale information tables. Int’l
                     Journal of Machine Learning and Cybernetics, 2021, 12(5): 1427–1437. [doi: 10.1007/s13042-020-01243-y]
                 [17]  Niu  DR,  Wu  WZ,  Li  TJ.  Variable  precision  based  optimal  scale  combinations  in  generalized  multi-scale  decision  systems.  Pattern
                     Recognition and Artificial Intelligence, 2019, 32(11): 965–974 (in  Chinese  with  English  abstract). [doi: 10.16451/j.cnki.issn1003-6059.
                     201911001]
                 [18]  Wu WZ, Leung Y. A comparison study of optimal scale combination selection in generalized multi-scale decision tables. Int’l Journal of
                     Machine Learning and Cybernetics, 2020, 11(5): 961–972. [doi: 10.1007/s13042-019-00954-1]
                 [19]  Wu WZ, Sun Y, Wang X, Zheng JW. Local optimal scale combination selections in inconsistent generalized multi-scale decision systems.
                     Pattern Recognition and Artificial Intelligence, 2021, 34(8): 689–700 (in  Chinese  with  English  abstract). [doi: 10.16451/j.cnki.issn1003-
                     6059.202108002]
                 [20]  Deng J, Zhan JM, Wu WZ. A three-way decision methodology to multi-attribute decision-making in multi-scale decision information
                     systems. Information Sciences, 2021, 568: 175–198. [doi: 10.1016/j.ins.2021.03.058]
                 [21]  Liu MM, Zhao SL, Han YH, Su DH, Li XC, Chen M. Research on multi-scale data mining method. Ruan Jian Xue Bao/Journal of
                     Software, 2016, 27(12): 3030–3050 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4924.htm [doi: 10.13328/j.cnki.
                     jos.004924]
                 [22]  Li  F,  Hu  BQ,  Wang  J.  Stepwise  optimal  scale  selection  for  multi-scale  decision  tables  via  attribute  significance.  Knowledge-based
                     Systems, 2017, 129: 4–16. [doi: 10.1016/j.knosys.2017.04.005]
                 [23]  Xu  Y,  Yao  YY.  Partition  order  product  space:  Partition  based  granular  computing  model.  Journal  of  Computer  Research  and
                     Development, 2019, 56(4): 836–843 (in  Chinese  with  English  abstract). [doi: 10.7544/issn1000-1239.2019.20180325]
                 [24]  Yang X, Li TR. , Liu D, Chen HM, Luo C. A unified framework of dynamic three-way probabilistic rough sets. Information Sciences,
                     2017, 420: 126–147. [doi: 10.1016/j.ins.2017.08.053]
                 [25]  Catanzariti F, Chiaselotti G, Infusino FG, Marino G. Object similarity measures and Pawlak’s indiscernibility on decision tables. Information
   379   380   381   382   383   384   385   386   387   388   389