Page 305 - 《软件学报》2024年第4期
P. 305
孙家泽 等: 基于可攻击空间假设的陷阱式集成对抗防御网络 1883
Cambridge: MIT Press, 1995.
[11] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the 2016 IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016. 770–778. [doi: 10.1109/CVPR.2016.90]
[12] Fawzi A, Moosavi-Dezfooli SM, Frossard P. Robustness of classifiers: From adversarial to random noise. In: Proc. of the 30th Int’l Conf.
on Neural Information Processing Systems. Barcelona: Curran Associates Inc., 2016, 29: 1632–1640.
[13] Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2013, 35(8): 1798–1828. [doi: 10.1109/TPAMI.2013.50]
[14] Müller R, Kornblith S, Hinton G. When does label smoothing help? In: Proc. of the 33rd Int’l Conf. on Neural Information Processing
Systems. Vancouver: Curran Associates Inc., 2019. 422.
[15] Cai XX, Du HM. Survey on adversarial example generation and adversarial attack method. Journal of Xi’an University of Posts and
Telecommunications, 2021, 26(1): 67–75 (in Chinese with English abstract). [doi: 10.13682/j.issn.2095-6533.2021.01.011]
[16] Kurakin A, Goodfellow IJ, Bengio S. Adversarial examples in the physical world. In: Proc. of the 5th Int’l Conf. on Learning Representations.
Toulon: OpenReview.net, 2018. 99–112.
[17] Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A. Towards deep learning models resistant to adversarial attacks. In: Proc. of the 6th
Int’l Conf. on Learning Representations. Vancouver: OpenReview.net, 2018.
[18] Carlini N, Wagner D. Towards evaluating the robustness of neural networks. In: Proc. of the 2017 IEEE Symp. on Security and Privacy
(SP). San Jose: IEEE, 2017. 39–57. [doi: 10.1109/SP.2017.49]
[19] Xiao CW, Li B, Zhu JY, He W, Liu MY, Song D. Generating adversarial examples with adversarial networks. In: Proc. of the 27th Int’l
Joint Conf. on Artificial Intelligence. Stockholm: AAAI Press, 2018. 3905–3911. [doi: 10.24963/ijcai.2018/543]
[20] Huang LF, Zhuang WZ, Liao YX, Liu N. Black-box adversarial attack method based on evolution strategy and attention mechanism.
Ruan Jian Xue Bao/Journal of Software, 2021, 32(11): 3512–3529 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/
6084.htm [doi: 10.13328/j.cnki.jos.006084]
[21] Papernot N, McDaniel P, Goodfellow I, Jha S, Celik ZB, Swami A. Practical black-box attacks against machine learning. In: Proc. of the
2017 ACM Asia Conf. on Computer and Communications Security. Abu Dhabi: ACM, 2017. 506−519. [doi: 10.1145/3052973.3053009]
[22] Pan WW, Wang XY, Song ML, Chen C. Survey on generating adversarial examples. Ruan Jian Xue Bao/Journal of Software, 2020,
31(1): 67–81 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5884.htm [doi: 10.13328/j.cnki.jos.005884]
[23] Pang TY, Du C, Dong YP, Zhu J. Towards robust detection of adversarial examples. In: Proc. of the 32nd Int ’l Conf. on Neural
Information Processing Systems. Montréal: Curran Associates Inc., 2018. 4584–4594.
[24] Pang TY, Du C, Zhu J. Max-mahalanobis linear discriminant analysis networks. In: Proc. of the 35th Int’l Conf. on Machine Learning.
Stockholm: PMLR, 2018. 4016–4025.
[25] Metzen JH, Genewein T, Fischer V, Bischoff B. On detecting adversarial perturbations. In: Proc. of the 5th Int’l Conf. on Learning
Representations. Toulon: OpenReview.net, 2017.
[26] Feinman R, Curtin RR, Shintre S, Gardner AB. Detecting adversarial samples from artifacts. arXiv:1703.00410, 2017.
[27] Pang TY, Xu K, Du C, Chen N, Zhu J. Improving adversarial robustness via promoting ensemble diversity. In: Proc. of the 36th Int’l
Conf. on Machine Learning. Long Beach: PMLR, 2019. 4970–4979.
[28] Van Der Maaten L, Hinton G. Visualizing Data using t-SNE. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
[29] Liu YP, Chen XY, Liu C, Song D. Delving into transferable adversarial examples and black-box attacks. In: Proc. of the 5th Int’l Conf.
on Learning Representations. Toulon: OpenReview.net, 2017.
[30] Xu WL, Evans D, Qi YJ. Feature squeezing: Detecting adversarial examples in deep neural networks. In: Proc. of the 25th Annual
Network and Distributed System Security Symp. Washington: The Internet Society, 2018. 15–26.
[31] Harder P, Pfreundt FJ, Keuper M, Keuper J. SpectralDefense: Detecting adversarial attacks on CNNs in the Fourier domain. In: Proc. of
the 2021 Int’l Joint Conf. on Neural Networks. Shenzhen: IEEE, 2021. 1–8. [doi: 10.1109/IJCNN52387.2021.9533442]
[32] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, VanderPlas JT,
Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. Scikit-learn: Machine learning in Python. The Journal of Machine
Learning Research, 2011, 12: 2825–2830.
[33] Papernot N, Faghri F, Carlini N, Goodfellow I, Feinman R, Kurakin A, McDaniel P. Adversarial Spheres. arXiv:1801.02774, 2018.
[34] Li YX, Jin W, Xu H, Tang JL. DeepRobust: A platform for adversarial attacks and defenses. In: Proc. of the 35th AAAI Conf. on
Artificial Intelligence. Palo Alto: AAAI Press, 2021. 16078–16080. [doi: 10.1609/aaai.v35i18.18017]
[35] Strauss T, Hanselmann M, Junginger A, Ulmer H. Ensemble methods as a defense to adversarial perturbations against deep neural
networks. In: Proc. of the 6th Int’l Conf. on Learning Representations. Vancouver: ICLR, 2018.