Page 281 - 《软件学报》2024年第4期
P. 281

王尚文 等: 基于指针神经网络的细粒度缺陷定位                                                         1859


                     Zurich: IEEE, 2012. 837–847. [doi: 10.1109/ICSE.2012.6227135]
                 [58]  Brody S, Alon U, Yahav E. A structural model for contextual code changes. Proc. of the ACM on Programming Languages, 2020, 4:
                     1–28. [doi: 10.1145/3428283]
                 [59]  Li J, Sun AX, Han JL, Li CL. A survey on deep learning for named entity recognition. IEEE Trans. on Knowledge and Data Engineering,
                     2022, 34(1): 50–70. [doi: 10.1109/tkde.2020.2981314]
                 [60]  Mannor S, Peleg D, Rubinstein R. The cross entropy method for classification. In: Proc. of the 22nd Int’l Conf. on Machine Learning.
                     Bonn: ACM, 2005. 561–568. [doi: 10.1145/1102351.1102422]
                 [61]  Karampatsis RM, Sutton CA. How often do single-statement bugs occur?: The ManySStuBs4J dataset. In: Proc. of the 17th Int’l Conf. on
                     Mining Software Repositories. Seoul: ACM, 2020. 573–577. [doi: 10.1145/3379597.3387491]
                 [62]  Li X, Li W, Zhang YQ, Zhang LM. DeepFL: Integrating multiple fault diagnosis dimensions for deep fault localization. In: Proc. of the
                     28th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Beijing: ACM, 2019. 169–180. [doi: 10.1145/3293882.3330574]
                 [63]  Zhang  MS,  Li  X,  Zhang  LM,  Khurshid  S.  Boosting  spectrum-based  fault  localization  using  PageRank.  In:  Proc.  of  the  26th  ACM
                     SIGSOFT Int’l Symp. on Software Testing and Analysis. Santa Barbara: ACM, 2017. 261–272. [doi: 10.1145/3092703.3092731]
                 [64]  Liu K, Kim D, Koyuncu A, Li L, Bissyandé TF, Le Traon Y. A closer look at real-world patches. In: Proc. of the 2018 IEEE Int’l Conf.
                     on Software Maintenance and Evolution. Madrid: IEEE, 2018. 275–286. [doi: 10.1109/ICSME.2018.00037]
                 [65]  Arcuri A, Briand L. A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: Proc. of the
                     33rd Int’l Conf. on Software Engineering. Honolulu: ACM, 2011. 1–10. [doi: 10.1145/1985793.1985795]
                 [66]  Madeiral F, Urli S, Maia M, Monperrus M. BEARS: An extensible Java bug benchmark for automatic program repair studies. In: Proc. of
                     the 26th IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering. Hangzhou: IEEE, 2019. 468–478. [doi: 10.1109/SANER.
                     2019.8667991]
                 [67]  Lin D, Koppel J, Chen AGL, Solar-Lezama A. QuixBugs: A multi-lingual program repair benchmark set based on the quixey challenge.
                     In: Proc. of the 2017 Companion of the ACM SIGPLAN Int’l Conf. on Systems, Programming, Languages, and Applications: Software
                     for Humanity. Vancouver: ACM, 2017. 55–56. [doi: 10.1145/3135932.3135941]
                 [68]  Saha R, Lyu YJ, Lam W, Yoshida H, Prasad MR. Bugs.jar: A large-scale, diverse dataset of real-world Java bugs. In: Proc. of the 15th
                     IEEE/ACM Int’l Conf. on Mining Software Repositories. Gothenburg: ACM, 2018. 10–13.
                 [69]  Wang SW, Wen M, Chen LQ, Yi X, Mao XG. How different is it between machine-generated and developer-provided patches? An
                     empirical study on the correct patches generated by automated program repair techniques. In: Proc. of the 2019 ACM/IEEE Int’l Symp.
                     on Empirical Software Engineering and Measurement. Porto de Galinhas: IEEE, 2019. 1–12. [doi: 10.1109/ESEM.2019.8870172]
                 [70]  Chen  LS,  Pei  Y,  Furia  CA.  Contract-based  program  repair  without  the  contracts.  In:  Proc.  of  the  32nd  IEEE/ACM  Int ’l  Conf.  on
                     Automated Software Engineering. Urbana: IEEE, 2017. 637–647. [doi: 10.1109/ASE.2017.8115674]
                 [71]  Koyuncu A, Liu K, Bissyandé TF, Kim D, Klein J, Monperrus M, Le Traon Y. FixMiner: Mining relevant fix patterns for automated
                     program repair. Empirical Software Engineering, 2020, 25(3): 1980–2024. [doi: 10.1007/s10664-019-09780-z]
                 [72]  Li Y, Wang SH, Nguyen TN. DLFix: Context-based code transformation learning for automated program repair. In: Proc. of the 42nd
                     IEEE/ACM Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 602–614.
                 [73]  Durieux T, Monperrus M. DynaMoth: Dynamic code synthesis for automatic program repair. In: Proc. of the 11th Int’l Workshop on
                     Automation of Software Test. Austin: ACM, 2016. 85–91. [doi: 10.1145/2896921.2896931]
                 [74]  Xuan JF, Martinez M, Demarco F, Clément M, Marcote SL, Durieux T, Berre DL, Monperrus M. Nopol: Automatic repair of conditional
                     statement bugs in java programs. IEEE Trans. on Software Engineering, 2017, 43(1): 34–55. [doi: 10.1109/TSE.2016.2560811]
                 [75]  Yuan Y, Banzhaf W. ARJA: Automated repair of Java programs via multi-objective genetic programming. IEEE Trans. on Software
                     Engineering, 2020, 46(10): 1040–1067. [doi: 10.1109/TSE.2018.2874648]
                 [76]  Wang SW, Mao XG, Niu N, Yi X, Guo AB. Multi-location program repair strategies learned from successful experience. In: Proc. of the
                     31st Int’l Conf. on Software Engineering and Knowledge Engineering. Lisbon: KSI, 2019. 713–777. [doi: 10.18293/SEKE2019-007]
   276   277   278   279   280   281   282   283   284   285   286