Page 280 - 《软件学报》2024年第4期
P. 280

1858                                                       软件学报  2024  年第  35  卷第  4  期


                 [35]  Kochhar PS, Xia X, Lo D, Li SP. Practitioners’ expectations on automated fault localization. In: Proc. of the 25th Int’l Symp. on Software
                     Testing and Analysis. Saarbrucken: ACM, 2016. 165–176. [doi: 10.1145/2931037.2931051]
                 [36]  Liu K, Koyuncu A, Bissyandé TF, Kim D, Klein J, Traon YL. You cannot fix what you cannot find! An investigation of fault localization
                     bias  in  benchmarking  automated  program  repair  systems.  In:  Proc.  of  the  12th  IEEE  Conf.  on  Software  Testing,  Validation  and
                     Verification. Xi’an: IEEE, 2019. 102–113. [doi: 10.1109/ICST.2019.00020]
                 [37]  Jiang JJ, Xiong YF, Zhang HY, Gao Q, Chen XQ. Shaping program repair space with existing patches and similar code. In: Proc. of the
                     27th  ACM  SIGSOFT  Int ’l  Symp.  on  Software  Testing  and  Analysis.  Amsterdam:  ACM,  2018.  298 –309.  [doi:  10.1145/3213846.
                     3213871]
                 [38]  Goues  CL,  Nguyen  T,  Forrest  S,  Weimer  W.  GenProg:  A  generic  method  for  automatic  software  repair.  IEEE  Trans.  on  Software
                     Engineering, 2012, 38(1): 54–72. [doi: 10.1109/TSE.2011.104]
                 [39]  Le XBD, Lo D, Goues CL. History driven program repair. In: Proc. of the 23rd IEEE Int’l Conf. on Software Analysis, Evolution, and
                     Reengineering. Osaka: IEEE, 2016. 213–224. [doi: 10.1109/SANER.2016.76]
                 [40]  Nguyen HDT, Qi DW, Roychoudhury A, Chandra S. SemFix: Program repair via semantic analysis. In: Proc. of the 35th Int’l Conf. on
                     Software Engineering. San Francisco: IEEE, 2013. 772–781. [doi: 10.1109/ICSE.2013.6606623]
                 [41]  Mechtaev S, Yi J, Roychoudhury A. Angelix: Scalable multiline program patch synthesis via symbolic analysis. In: Proc. of the 38th Int’l
                     Conf. on Software Engineering. Austin: ACM, 2016. 691–701. [doi: 10.1145/2884781.2884807]
                 [42]  Liu  K,  Koyuncu  A,  Kim  D,  Bissyandé  TF.  TBar:  Revisiting  template-based  automated  program  repair.  In:  Proc.  of  the  28th  ACM
                     SIGSOFT Int’l Symp. on Software Testing and Analysis. Beijing: ACM, 2019. 31–42. [doi: 10.1145/3293882.3330577]
                 [43]  Liu K, Koyuncu A, Kim D, Bissyandè TF. AVATAR: Fixing semantic bugs with fix patterns of static analysis violations. In: Proc. of the
                     IEEE 26th Int’l Conf. on Software Analysis, Evolution and Reengineering. Hangzhou: IEEE, 2019. 456–467. [doi: 10.1109/SANER.2019.
                     8667970]
                 [44]  Lutellier T, Pham HV, Pang L, Li YT, Wei MS, Tan L. CoCoNuT: Combining context-aware neural translation models using ensemble
                     for program repair. In: Proc. of the 29th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. ACM, 2020. 101–114. [doi: 10.
                     1145/3395363.3397369]
                 [45]  Jiang  N,  Lutellier  T,  Tan  L.  CURE:  Code-aware  neural  machine  translation  for  automatic  program  repair.  In:  Proc.  of  the  43rd
                     IEEE/ACM Int’l Conf. on Software Engineering. Madrid: IEEE, 2021. 1161–1173. [doi: 10.1109/ICSE43902.2021.00107]
                 [46]  Allamanis M, Brockschmidt M, Khademi M. Learning to represent programs with graphs. In: Proc. of the 6th Int’l Conf. on Learning
                     Representations. Vancouver: ICLR, 2018.
                 [47]  Bhatia S, Kohli P, Singh R. Neuro-symbolic program corrector for introductory programming assignments. In: Proc. of the 40th Int’l
                     Conf. on Software Engineering. Gothenburg: ACM, 2018. 60–70. [doi: 10.1145/3180155.3180219]
                 [48]  Chakraborty  S,  Ding  YRB,  Allamanis  M,  Ray  B.  Codit:  Code  editing  with  tree-based  neural  models.  IEEE  Trans.  on  Software
                     Engineering, 2022, 48(4): 1385–1399. [doi: 10.1109/TSE.2020.3020502]
                 [49]  Zhu QH, Sun ZY, Xiao YA, Zhang WJ, Yuan K, Xiong YF, Zhang L. A syntax-guided edit decoder for neural program repair. In: Proc.
                     of the 29th ACM Joint Meeting on European Software Engineering Conf. and the Symp. on the Foundations of Software Engineering.
                     Athens: ACM, 2021. 341–353. [doi: 10.1145/3468264.3468544]
                 [50]  Xiong YF, Wang J, Yan RF, Zhang JC, Han S, Huang G, Zhang L. Precise condition synthesis for program repair. In: Proc. of the 39th
                     IEEE/ACM Int’l Conf. on Software Engineering. Buenos Aires: IEEE, 2017. 416–426. [doi: 10.1109/ICSE.2017.45]
                 [51]  Wen M, Chen JJ, Wu RX, Hao D, Cheung SC. Context-aware patch generation for better automated program repair. In: Proc. of the 40th
                     Int’l Conf. on Software Engineering. Gothenburg: ACM, 2018. 1–11. [doi: 10.1145/3180155.3180233]
                 [52]  Falleri JR, Morandat F, Blanc X, Martinez M, Monperrus M. Fine-grained and accurate source code differencing. In: Proc. of the 29th
                     ACM/IEEE Int’l Conf. on Automated Software Engineering. Vasteras: ACM, 2014. 313–324. [doi: 10.1145/2642937.2642982]
                 [53]  Binkley D, Davis M, Lawrie D, Morrell C. To camelcase or under_score. In: Proc. of the 17th IEEE Int’l Conf. on Program Comprehen-
                     sion. Vancouver: IEEE, 2009. 158–167. [doi: 10.1109/ICPC.2009.5090039]
                 [54]  Hill  E,  Binkley  D,  Lawrie  D,  Pollock  L,  Vijay-Shanker  K.  An  empirical  study  of  identifier  splitting  techniques.  Empirical  Software
                     Engineering, 2014, 19(6): 1754–1780. [doi: 10.1007/s10664-013-9261-0]
                 [55]  Rozovskaya A, Roth D. Grammatical error correction: Machine translation and classifiers. In: Proc. of the 54th Annual Meeting of the
                     Association for Computational Linguistics. Berlin: ACL, 2016. 2205–2215. [doi: 10.18653/v1/p16-1208]
                 [56]  Wang LH, Zheng XQ. Improving grammatical error correction models with purpose-built adversarial examples. In: Proc. of the 2020
                     Conf. on Empirical Methods in Natural Language Processing. ACL, 2020. 2858–2869. [doi: 10.18653/v1/2020.emnlp-main.228]
                 [57]  Hindle A, Barr ET, Su ZD, Gabel M, Devanbu P. On the naturalness of software. In: Proc. of the 34th Int’l Conf. on Software Engineering.
   275   276   277   278   279   280   281   282   283   284   285