Page 279 - 《软件学报》2024年第4期
P. 279

王尚文 等: 基于指针神经网络的细粒度缺陷定位                                                         1857


                     neural networks. Proc. of the ACM on Programming Languages, 2019, 3: 162. [doi: 10.1145/3360588]
                 [13]  Alon U, Brody S, Levy O, Yahav E. code2seq: Generating sequences from structured representations of code. In: Proc. of the 7th Int’l
                     Conf. on Learning Representations. New Orleans: ICLR, 2019.
                 [14]  Alon U, Sadaka R, Levy O, Yahav E. Structural language models of code. In: Proc. of the 37th Int’l Conf. on Machine Learning. PMLR,
                     2020. 245–256.
                 [15]  Alon U, Zilberstein M, Levy O, Yahav E. A general path-based representation for predicting program properties. In: Proc. of the 39th
                     ACM  SIGPLAN  Conf.  on  Programming  Language  Design  and  Implementation.  Philadelphia:  ACM,  2018.  404 –419.  [doi:  10.1145/
                     3192366.3192412]
                 [16]  Alon U, Zilberstein M, Levy O, Yahav E. code2vec: Learning distributed representations of code. Proc. of the ACM on Programming
                     Languages, 2019, 3: 40. [doi: 10.1145/3290353]
                 [17]  Vinyals O, Fortunato M, Jaitly N. Pointer networks. In: Proc. of the 28th Int’l Conf. on Neural Information Processing Systems. Montreal:
                     MIT Press, 2015. 2692–2700.
                 [18]  Wong WE, Gao RZ, Li YH, Abreu R, Wotawa F. A survey on software fault localization. IEEE Trans. on Software Engineering, 2016,
                     42(8): 707–740. [doi: 10.1109/TSE.2016.2521368]
                 [19]  Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller B. Evaluating and improving fault localization. In: Proc. of
                     the 39th Int’l Conf. on Software Engineering. Buenos Aires: IEEE, 2017. 609–620. [doi: 10.1109/ICSE.2017.62]
                 [20]  Abreu R, Zoeteweij P, Van Gemund AJC. On the accuracy of spectrum-based fault localization. In: Testing: Academic and Industrial
                     Conf. Practice and Research Techniques-MUTATION. Windsor: IEEE, 2007. 89–98. [doi: 10.1109/TAIC.PART.2007.13]
                 [21]  Jones JA, Harrold MJ, Stasko J. Visualization of test information to assist fault localization. In: Proc. of the 24th Int’l Conf. on Software
                     Engineering. Orlando: ACM, 2002. 467–477. [doi: 10.1145/581339.581397]
                 [22]  Papadakis  M,  Le  Traon  Y.  Metallaxis-FL:  Mutation-based  fault  localization.  Software  Testing,  Verification  and  Reliability,  2015,
                     25(5–7): 605–628. [doi: 10.1002/stvr.1509]
                 [23]  Zhang XY, Gupta N, Gupta R. A study of effectiveness of dynamic slicing in locating real faults. Empirical Software Engineering, 2007,
                     12(2): 143–160. [doi: 10.1007/s10664-006-9007-3]
                 [24]  Liblit B, Naik M, Zheng AX, Aiken A, Jordan MI. Scalable statistical bug isolation. In: Proc. of the 2005 ACM SIGPLAN Conf. on
                     Programming Language Design and Implementatio. Chicago: ACM, 2005. 15–26. [doi: 10.1145/1065010.1065014]
                 [25]  Zeller A, Hildebrandt R. Simplifying and isolating failure-inducing input. IEEE Trans. on Software Engineering, 2002, 28(2): 183–200.
                     [doi: 10.1109/32.988498]
                 [26]  Wong WE, Debroy V, Golden R, Xu XF, Thuraisingham B. Effective software fault localization using an RBF neural network. IEEE
                     Trans. on Reliability, 2012, 61(1): 149–169. [doi: 10.1109/TR.2011.2172031]
                 [27]  Koyuncu A, Liu K, Bissyandé TF, Kim D, Monperrus M, Klein J, Le Traon Y. iFixR: Bug report driven program repair. In: Proc. of the
                     27th ACM Joint Meeting on European Software Engineering Conf. and the Symp. on the Foundations of Software Engineering. Tallinn:
                     ACM, 2019. 314–325. [doi: 10.1145/3338906.3338935]
                 [28]  Mayer W, Stumptner M. Evaluating models for model-based debugging. In: Proc. of the 23rd IEEE/ACM Int’l Conf. on Automated Soft-
                     ware Engineering. L’Aquila: IEEE, 2008. 128–137. [doi: 10.1109/ASE.2008.23]
                 [29]  Benton S, Li X, Lou YL, Zhang LM. On the effectiveness of unified debugging: An extensive study on 16 program repair systems. In:
                     Proc. of the 35th IEEE/ACM Int’l Conf. on Automated Software Engineering. Melbourne: ACM, 2020. 907–918. [doi: 10.1145/3324884.
                     3416566]
                 [30]  Zou DM, Liang JJ, Xiong YF, Ernst MD, Zhang L. An empirical study of fault localization families and their combinations. IEEE Trans.
                     on Software Engineering, 2021, 47(2): 332–347. [doi: 10.1109/TSE.2019.2892102]
                 [31]  Lou YL, Zhu QH, Dong JH, Li X, Sun ZY, Hao D, Zhang L, Zhang LM. Boosting coverage-based fault localization via graph-based
                     representation  learning.  In:  Proc.  of  the  29th  ACM  Joint  Meeting  on  European  Software  Engineering  Conf.  and  the  Symp.  on  the
                     Foundations of Software Engineering. Athens: ACM, 2021. 664–676. [doi: 10.1145/3468264.3468580]
                 [32]  Xie H, Lei Y, Yan M, Yu Y, Xia X, Mao XG. A universal data augmentation approach for fault localization. In: Proc. of the 44th Int’l
                     Conf. on Software Engineering. Pittsburgh: ACM, 2022. 48–60. [doi: 10.1145/3510003.3510136]
                 [33]  Küçük  Y,  Henderson  TAD,  Podgurski  A.  Improving  fault  localization  by  integrating  value  and  predicate  based  causal  inference
                     techniques.  In:  Proc.  of  the  43rd  IEEE/ACM  Int ’l  Conf.  on  Software  Engineering.  Madrid:  IEEE,  2021.  649 –660.  [doi:  10.1109/
                     ICSE43902.2021.00066]
                 [34]  Xie XY, Liu ZC, Song S, Chen ZY, Xuan JF, Xu BW. Revisit of automatic debugging via human focus-tracking analysis. In: Proc. of the
                     38th Int’l Conf. on Software Engineering. Austin: ACM, 2016. 808–819. [doi: 10.1145/2884781.2884834]
   274   275   276   277   278   279   280   281   282   283   284