Page 279 - 《软件学报》2024年第4期
P. 279
王尚文 等: 基于指针神经网络的细粒度缺陷定位 1857
neural networks. Proc. of the ACM on Programming Languages, 2019, 3: 162. [doi: 10.1145/3360588]
[13] Alon U, Brody S, Levy O, Yahav E. code2seq: Generating sequences from structured representations of code. In: Proc. of the 7th Int’l
Conf. on Learning Representations. New Orleans: ICLR, 2019.
[14] Alon U, Sadaka R, Levy O, Yahav E. Structural language models of code. In: Proc. of the 37th Int’l Conf. on Machine Learning. PMLR,
2020. 245–256.
[15] Alon U, Zilberstein M, Levy O, Yahav E. A general path-based representation for predicting program properties. In: Proc. of the 39th
ACM SIGPLAN Conf. on Programming Language Design and Implementation. Philadelphia: ACM, 2018. 404 –419. [doi: 10.1145/
3192366.3192412]
[16] Alon U, Zilberstein M, Levy O, Yahav E. code2vec: Learning distributed representations of code. Proc. of the ACM on Programming
Languages, 2019, 3: 40. [doi: 10.1145/3290353]
[17] Vinyals O, Fortunato M, Jaitly N. Pointer networks. In: Proc. of the 28th Int’l Conf. on Neural Information Processing Systems. Montreal:
MIT Press, 2015. 2692–2700.
[18] Wong WE, Gao RZ, Li YH, Abreu R, Wotawa F. A survey on software fault localization. IEEE Trans. on Software Engineering, 2016,
42(8): 707–740. [doi: 10.1109/TSE.2016.2521368]
[19] Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller B. Evaluating and improving fault localization. In: Proc. of
the 39th Int’l Conf. on Software Engineering. Buenos Aires: IEEE, 2017. 609–620. [doi: 10.1109/ICSE.2017.62]
[20] Abreu R, Zoeteweij P, Van Gemund AJC. On the accuracy of spectrum-based fault localization. In: Testing: Academic and Industrial
Conf. Practice and Research Techniques-MUTATION. Windsor: IEEE, 2007. 89–98. [doi: 10.1109/TAIC.PART.2007.13]
[21] Jones JA, Harrold MJ, Stasko J. Visualization of test information to assist fault localization. In: Proc. of the 24th Int’l Conf. on Software
Engineering. Orlando: ACM, 2002. 467–477. [doi: 10.1145/581339.581397]
[22] Papadakis M, Le Traon Y. Metallaxis-FL: Mutation-based fault localization. Software Testing, Verification and Reliability, 2015,
25(5–7): 605–628. [doi: 10.1002/stvr.1509]
[23] Zhang XY, Gupta N, Gupta R. A study of effectiveness of dynamic slicing in locating real faults. Empirical Software Engineering, 2007,
12(2): 143–160. [doi: 10.1007/s10664-006-9007-3]
[24] Liblit B, Naik M, Zheng AX, Aiken A, Jordan MI. Scalable statistical bug isolation. In: Proc. of the 2005 ACM SIGPLAN Conf. on
Programming Language Design and Implementatio. Chicago: ACM, 2005. 15–26. [doi: 10.1145/1065010.1065014]
[25] Zeller A, Hildebrandt R. Simplifying and isolating failure-inducing input. IEEE Trans. on Software Engineering, 2002, 28(2): 183–200.
[doi: 10.1109/32.988498]
[26] Wong WE, Debroy V, Golden R, Xu XF, Thuraisingham B. Effective software fault localization using an RBF neural network. IEEE
Trans. on Reliability, 2012, 61(1): 149–169. [doi: 10.1109/TR.2011.2172031]
[27] Koyuncu A, Liu K, Bissyandé TF, Kim D, Monperrus M, Klein J, Le Traon Y. iFixR: Bug report driven program repair. In: Proc. of the
27th ACM Joint Meeting on European Software Engineering Conf. and the Symp. on the Foundations of Software Engineering. Tallinn:
ACM, 2019. 314–325. [doi: 10.1145/3338906.3338935]
[28] Mayer W, Stumptner M. Evaluating models for model-based debugging. In: Proc. of the 23rd IEEE/ACM Int’l Conf. on Automated Soft-
ware Engineering. L’Aquila: IEEE, 2008. 128–137. [doi: 10.1109/ASE.2008.23]
[29] Benton S, Li X, Lou YL, Zhang LM. On the effectiveness of unified debugging: An extensive study on 16 program repair systems. In:
Proc. of the 35th IEEE/ACM Int’l Conf. on Automated Software Engineering. Melbourne: ACM, 2020. 907–918. [doi: 10.1145/3324884.
3416566]
[30] Zou DM, Liang JJ, Xiong YF, Ernst MD, Zhang L. An empirical study of fault localization families and their combinations. IEEE Trans.
on Software Engineering, 2021, 47(2): 332–347. [doi: 10.1109/TSE.2019.2892102]
[31] Lou YL, Zhu QH, Dong JH, Li X, Sun ZY, Hao D, Zhang L, Zhang LM. Boosting coverage-based fault localization via graph-based
representation learning. In: Proc. of the 29th ACM Joint Meeting on European Software Engineering Conf. and the Symp. on the
Foundations of Software Engineering. Athens: ACM, 2021. 664–676. [doi: 10.1145/3468264.3468580]
[32] Xie H, Lei Y, Yan M, Yu Y, Xia X, Mao XG. A universal data augmentation approach for fault localization. In: Proc. of the 44th Int’l
Conf. on Software Engineering. Pittsburgh: ACM, 2022. 48–60. [doi: 10.1145/3510003.3510136]
[33] Küçük Y, Henderson TAD, Podgurski A. Improving fault localization by integrating value and predicate based causal inference
techniques. In: Proc. of the 43rd IEEE/ACM Int ’l Conf. on Software Engineering. Madrid: IEEE, 2021. 649 –660. [doi: 10.1109/
ICSE43902.2021.00066]
[34] Xie XY, Liu ZC, Song S, Chen ZY, Xuan JF, Xu BW. Revisit of automatic debugging via human focus-tracking analysis. In: Proc. of the
38th Int’l Conf. on Software Engineering. Austin: ACM, 2016. 808–819. [doi: 10.1145/2884781.2884834]