Page 210 - 《软件学报》2024年第4期
P. 210

1788                                                       软件学报  2024 年第 35 卷第 4 期

         [38]    Angel A,  Koudas  N,  Sarkas  N,  et al.  Dense subgraph  maintenance under streaming  edge  weight updates  for real-time story
             identification. The VLDB Journal, 2014, 23: 175−199.
         [39]    Yu W, Li J, Bhuiyan MZA, et al. Ring: Real-time emerging anomaly monitoring system over text streams. IEEE Trans. on Big
             Data, 2017, 5(4): 506−519.
         [40]    Allan J. Topic Detection and Tracking: Event-based Information Organization. Springer Publishing Company, Incorporated, 2002.
         [41]    Peng H, Zhang R,  Li  S,  et al.  Reinforced, incremental and  cross-lingual  event detection from social  messages. IEEE  Trans.  on
             Pattern Analysis and Machine Intelligence, 2022, 45(1): 980−998.
         [42]    Sun M, Zhao S, Gilvary C, et al. Graph convolutional networks for computational drug development and discovery. Briefings in
             Bioinformatics, 2020, 21(3): 919−935.
         [43]    Rong Y, Bian Y, Xu T, et al. Self-supervised graph transformer on large-scale molecular data. In: Advances in Neural Information
             Proccesing Systems, Vol.33. 2020. 12559−12571.
         [44]    Xiao ST, Shao YX, Li YW, et al. LECF: Recommendation via learnable edge collaborative filtering. Science China Information
             Sciences, 2022, 65(1): 112101.
         [45]    Li Y, Yuan Y, Wang Y, et al. Distributed multimodal path queries. IEEE Trans. on Knowledge and Data Engineering, 2020, 34(7):
             3196−3210.
         [46]    Veličković P, Cucurull G, Casanova A, et al. Graph attention networks. arXiv:1710.10903, 2017.
         [47]    Li H,  Shao Y, Du  J,  et al.  An I/O-efficient disk-based graph system  for scalable second-order random  walk of large  graphs.
             arXiv:2203.16123, 2022.
         [48]    Dai H, Li H, Tian T, et al. Adversarial attack on graph structured data. In: Proc. of the Int’l Conf. on Machine Learning. 2018.
             1115−1124.
         [49]    Chen L, Li JT, Peng QB, et al. Understanding structural vulnerability in graph convolutional networks. In: Proc. of the IJCAI. 2021.
             2249−2255.
         [50]    Zhu D, Zhang Z, Cui P, et al. Robust graph convolutional networks against adversarial attacks. In: Proc. of the 25th ACM SIGKDD
             Int’l Conf. on Knowledge Discovery & Data Mining. 2019. 1399−1407.
         [51]    Li Q, Wen Z, Wu Z, et al. A survey on Federated learning systems: Vision, hype and reality for data privacy and protection. IEEE
             Trans. on Knowledge and Data Engineering, 2021, 35(4): 3347−3366.
         [52]    Arivazhagan MG, Aggarwal V, Singh AK, et al. Federated learning with personalization layers. arXiv:1912.00818, 2019.
         [53]    Wang B, Li A, Pang M, et al. GraphFL: A Federated learning framework for semi-supervised node classification on graphs. In:
             Proc. of the ICDM IEEE Int’l Conf. on Data Mining. 2022. 498−507.
         [54]    Scardapane  S,  Spinelli  I, Di Lorenzo P. Distributed training of graph  convolutional networks. IEEE  Trans.  on Signal  and
             Information Processing over Networks, 2020, 7: 87−100.
         [55]    Wan C, Li Y, Li A, et al. BNS-GCN: Efficient full-graph training of graph convolutional networks with partition-parallelism and
             random boundary node sampling. Proc. of the Machine Learning and Systems, 2022, 4: 673−693.
         [56]    Yao Y, Jin W,  Ravi  S,  et  al.  FedGCN: Convergence-communication tradeoffs in  Federated  training of graph  convolutional
             networks. arXiv:2201.12433, 2023.
         [57]    Zhang K, Yang C, Li X, et al. Subgraph Federated learning with missing neighbor generation. In: Advances in Neural Information
             Proccessing Systems, Vol.34. 2021. 6671−6682.
         [58]    Watkins CJCH, Dayan P. Q-learning. Machine Learning, 1992, 8: 279−292.
         [59]    Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning. arXiv:1312.5602, 2013.
         [60]    Sutton RS,  McAllester  D, Singh S,  et al.  Policy  gradient methods  for reinforcement learning with  function approximation.  In:
             Advances in Neural Information Processing Systems, Vol.12. 1999.1057−1063.
         [61]    Silver D, Lever G, Heess N, et al. Deterministic policy gradient algorithms. In: Proc. of the 31st Int’l Conf. on Machine Learning.
             2014. 387−395.
         [62]    Lillicrap TP, Hunt JJ, Pritzel A, et al. Continuous control with deep reinforcement learning. arXiv:1509.02971, 2019.
         [63]    Banner R, Hubara I, Hoffer E, et al. Scalable methods for 8-bit training of neural networks. In: Advances in Neural Information
             Processing Systems, Vol.31. 2018.
         [64]    Li  Y, Li W,  Xue  Z. Federated learning  with stochastic quantization.  Int’l  Journal of Intelligent Systems, 2022, 37(12):
             11600−11621.
   205   206   207   208   209   210   211   212   213   214   215