Page 209 - 《软件学报》2024年第4期
P. 209

管泽礼  等:  基于强化联邦 GNN 的个性化公共安全突发事件检测                                               1787


         [13]    Grover  A,  Leskovec  J.  Node2vec: Scalable  feature  learning for networks.  In:  Proc. of the  22nd ACM SIGKDD  Int’l  Conf.  on
             Knowledge Discovery and Data Mining. 2016. 855−864.
         [14]    Yang  JX, Du  JP, Shao YX,  et al.  Construction  method of intellectual-property-oriented  scientific  and technological resources
             portrait. Ruan Jian Xue Bao/Journal of Software, 2022, 33(4): 1439−1450 (in Chinese with English abstract). https://www.jos.org.
             cn/1000-9825/6483.htm [doi: 10.13328/j.cnki.jos.006483]
         [15]    Peng H, Li  J, Gong Q,  et  al. Fine-grained  event categorization with  heterogeneous graph convolutional  networks.  arXiv:1906.
             04580, 2019.
         [16]    Liu J, Ong  GP, Chen  X.  GraphSAGE-based  traffic speed forecasting  for segment network  with sparse data. IEEE  Trans.  on
             Intelligent Transportation Systems, 2020, 23(3): 1755−1766.
         [17]    Bongini P, Bianchini M, Scarselli F. Molecular generative graph neural networks for drug discovery. Neurocomputing, 2021, 450:
             242−252.
         [18]    Chen JS, Meng XW, Ji WY, et al. POI recommendation based on multidimensional context-aware graph embedding model. Ruan
             Jian Xue Bao/Journal of  Software, 2020,  31(12):  3700−3715  (in Chinese with English  abstract).  http://www.jos.org.cn/1000-
             9825/5855.htm [doi: 10.13328/j.cnki.jos.005855]
         [19]    Shi C, Han X, Song L, et al. Deep collaborative filtering with multi-aspect information in heterogeneous networks. IEEE Trans. on
             Knowledge and Data Engineering, 2019, 33(4): 1413−1425.
         [20]    Zhang Y, Shi Y, Zhou Z, et al. Efficient and secure skyline queries over vertical data federation. IEEE Trans. on Knowledge and
             Data Engineering, 2022, 35(9): 9269−9280.
         [21]    Pan X, Tong Y, Xue C, et al. Hu-Fu: A data federation system for secure spatial queries. Proc. of the VLDB Endowment, 2022,
             15(12): 3582−3585.
         [22]    Shen X, Dai Q, Chung FL, et al. Adversarial deep network embedding for cross-network node classification. Proc. of the AAAI
             Conf. on Artificial Intelligence, 2020, 34(3): 2991−2999.
         [23]    Guan Z, Li Y, Xue Z, et al. Federated graph neural network for cross-graph node classification. In: Proc. of the 2021 IEEE 7th Int’l
             Conf. on Cloud Computing and Intelligent Systems (CCIS). IEEE, 2021. 418−422.
         [24]    Li Q, He B,  Song  D. Model-contrastive  federated  learning. In:  Proc. of  the IEEE/CVF  Conf. on  Computer Vision and  Pattern
             Recognition. 2021. 10713−10722.
         [25]    Wang H, Kaplan Z, Niu D, et al. Optimizing Federated learning on non-iid data with reinforcement learning. In: Proc. of the IEEE
             Conf. on Computer Communications (INFOCOM 2020). IEEE, 2020. 1698−1707.
         [26]    McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data. In: Proc. of
             the Artificial Intelligence and Statistics. 2017. 1273−1282.
         [27]    He C, Balasubramanian K, Ceyani E, et al. FedGraphNN: A Federated learning system and benchmark for graph neural networks.
             arXiv:2104.07145, 2021.
         [28]    He C,  Ceyani  E, Balasubramanian K,  et al.  SpreadGNN:  Serverless  multi-task  Federated  learning for graph neural networks.
             arXiv:2106.02743, 2021.
         [29]    Baek J, Jeong W, Jin J, et al. Personalized subgraph Federated learning. arXiv:2206.10206, 2022.
         [30]    Huang Y, Chu L, Zhou Z, et al. Personalized cross-silo Federated learning on non-iid data. Proc. of the AAAI Conf. on Artificial
             Intelligence, 2021, 35(9): 7865−7873.
         [31]    Schneider J, Vlachos M. Mass personalization of deep learning. arXiv:1909.02803, 2019.
         [32]    Li T, Sahu AK, Zaheer M, et al. Federated optimization in heterogeneous networks. Proc. of the Machine Learning and Systems,
             2020, 2: 429−450.
         [33]    Kober J, Bagnell JA, Peters J. Reinforcement learning in robotics: A survey. The Int’l Journal of Robotics Research, 2013, 32(11):
             1238−1274.
         [34]    Sun Q, Li J, Peng H, et al. SUGAR: Subgraph neural network with reinforcement pooling and self-supervised mutual information
             mechanism. In: Proc. of the Web Conf. 2021. 2081−2091.
         [35]    Yang M, Li C, Sun F, et al. Be relevant, non-redundant, and timely: Deep reinforcement learning for real-time event summarization.
             Proc. of the AAAI Conf. on Artificial Intelligence, 2020, 34(5): 9410−9417.
         [36]    Zhou H, Yin H, Zheng H, et al. A survey on multi-modal social event detection. Knowledge-based Systems, 2020, 195: 105695.
         [37]    Allan J. Introduction to  Topic Detection  and Tracking.  Topic  Detection  and Tracking:  Event-based Information Organization.
             Boston: Springer, 2002. 1−16.
   204   205   206   207   208   209   210   211   212   213   214