Page 209 - 《软件学报》2024年第4期
P. 209
管泽礼 等: 基于强化联邦 GNN 的个性化公共安全突发事件检测 1787
[13] Grover A, Leskovec J. Node2vec: Scalable feature learning for networks. In: Proc. of the 22nd ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining. 2016. 855−864.
[14] Yang JX, Du JP, Shao YX, et al. Construction method of intellectual-property-oriented scientific and technological resources
portrait. Ruan Jian Xue Bao/Journal of Software, 2022, 33(4): 1439−1450 (in Chinese with English abstract). https://www.jos.org.
cn/1000-9825/6483.htm [doi: 10.13328/j.cnki.jos.006483]
[15] Peng H, Li J, Gong Q, et al. Fine-grained event categorization with heterogeneous graph convolutional networks. arXiv:1906.
04580, 2019.
[16] Liu J, Ong GP, Chen X. GraphSAGE-based traffic speed forecasting for segment network with sparse data. IEEE Trans. on
Intelligent Transportation Systems, 2020, 23(3): 1755−1766.
[17] Bongini P, Bianchini M, Scarselli F. Molecular generative graph neural networks for drug discovery. Neurocomputing, 2021, 450:
242−252.
[18] Chen JS, Meng XW, Ji WY, et al. POI recommendation based on multidimensional context-aware graph embedding model. Ruan
Jian Xue Bao/Journal of Software, 2020, 31(12): 3700−3715 (in Chinese with English abstract). http://www.jos.org.cn/1000-
9825/5855.htm [doi: 10.13328/j.cnki.jos.005855]
[19] Shi C, Han X, Song L, et al. Deep collaborative filtering with multi-aspect information in heterogeneous networks. IEEE Trans. on
Knowledge and Data Engineering, 2019, 33(4): 1413−1425.
[20] Zhang Y, Shi Y, Zhou Z, et al. Efficient and secure skyline queries over vertical data federation. IEEE Trans. on Knowledge and
Data Engineering, 2022, 35(9): 9269−9280.
[21] Pan X, Tong Y, Xue C, et al. Hu-Fu: A data federation system for secure spatial queries. Proc. of the VLDB Endowment, 2022,
15(12): 3582−3585.
[22] Shen X, Dai Q, Chung FL, et al. Adversarial deep network embedding for cross-network node classification. Proc. of the AAAI
Conf. on Artificial Intelligence, 2020, 34(3): 2991−2999.
[23] Guan Z, Li Y, Xue Z, et al. Federated graph neural network for cross-graph node classification. In: Proc. of the 2021 IEEE 7th Int’l
Conf. on Cloud Computing and Intelligent Systems (CCIS). IEEE, 2021. 418−422.
[24] Li Q, He B, Song D. Model-contrastive federated learning. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition. 2021. 10713−10722.
[25] Wang H, Kaplan Z, Niu D, et al. Optimizing Federated learning on non-iid data with reinforcement learning. In: Proc. of the IEEE
Conf. on Computer Communications (INFOCOM 2020). IEEE, 2020. 1698−1707.
[26] McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data. In: Proc. of
the Artificial Intelligence and Statistics. 2017. 1273−1282.
[27] He C, Balasubramanian K, Ceyani E, et al. FedGraphNN: A Federated learning system and benchmark for graph neural networks.
arXiv:2104.07145, 2021.
[28] He C, Ceyani E, Balasubramanian K, et al. SpreadGNN: Serverless multi-task Federated learning for graph neural networks.
arXiv:2106.02743, 2021.
[29] Baek J, Jeong W, Jin J, et al. Personalized subgraph Federated learning. arXiv:2206.10206, 2022.
[30] Huang Y, Chu L, Zhou Z, et al. Personalized cross-silo Federated learning on non-iid data. Proc. of the AAAI Conf. on Artificial
Intelligence, 2021, 35(9): 7865−7873.
[31] Schneider J, Vlachos M. Mass personalization of deep learning. arXiv:1909.02803, 2019.
[32] Li T, Sahu AK, Zaheer M, et al. Federated optimization in heterogeneous networks. Proc. of the Machine Learning and Systems,
2020, 2: 429−450.
[33] Kober J, Bagnell JA, Peters J. Reinforcement learning in robotics: A survey. The Int’l Journal of Robotics Research, 2013, 32(11):
1238−1274.
[34] Sun Q, Li J, Peng H, et al. SUGAR: Subgraph neural network with reinforcement pooling and self-supervised mutual information
mechanism. In: Proc. of the Web Conf. 2021. 2081−2091.
[35] Yang M, Li C, Sun F, et al. Be relevant, non-redundant, and timely: Deep reinforcement learning for real-time event summarization.
Proc. of the AAAI Conf. on Artificial Intelligence, 2020, 34(5): 9410−9417.
[36] Zhou H, Yin H, Zheng H, et al. A survey on multi-modal social event detection. Knowledge-based Systems, 2020, 195: 105695.
[37] Allan J. Introduction to Topic Detection and Tracking. Topic Detection and Tracking: Event-based Information Organization.
Boston: Springer, 2002. 1−16.