Page 370 - 《软件学报》2021年第12期
P. 370
4034 Journal of Software 软件学报 Vol.32, No.12, December 2021
[8] Wang T, Gong S, Zhu X, et al. Person reidentification by discriminative selection in video ranking. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2016,38(12):2501−2514. [doi: 10.1109/TPAMI.2016.2522418]
[9] Wu Y, Lin Y, Dong X, et al. Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning. In:
Proc. of the IEEE Int’l Conf. on Computer Vision and Pattern Recognition. 2018. 5177−5186. [doi: 10.1109/CVPR.2018.00543]
[10] Liu Z, Wang D, Lu H. Stepwise metric promotion for unsupervised video person re-identification. In: Proc. of the IEEE Int’l Conf.
on Computer Vision. 2017. 2429−2438. [doi: 10.1109/ICCV.2017.266]
[11] Ye M, Ma AJ, Zheng L, et al. Dynamic label graph matching for unsupervised video re-identification. In: Proc. of the IEEE Int’l
Conf. on Computer Vision. 2017. 5142−5150. [doi: 10.1109/ICCV.2017.550]
[12] Hermans A, Beyer L, Leibe B. In defense of the triplet loss for person re-identification. arXiv: 1703.07737.
[13] Xiao T, Li S, Wang B, et al. Joint detection and identification feature learning for person search. In: Proc. of the IEEE Int’l Conf.
on Computer Vision and Pattern Recognition. 2017. 3376−3385. [doi: 10.1109/CVPR.2017.360]
[14] Liu Y, Yuan Z, Zhou W, et al. Spatial and temporal mutual promotion for video-based person re-identification. In: Proc. of the 33rd
AAAI Conf. on Artificial Intelligence, Vol.33. 2019. 8786−8793. [doi: 10.1609/aaai.v33i01.33018786]
[15] Li S, Bak S, Carr P, et al. Diversity regularized spatio temporal attention for video-based person re-identification. In: Proc. of the
IEEE Int’l Conf. on Computer Vision and Pattern Recognition. 2018. 369−378. [doi: 10.1109/CVPR.2018.00046]
[16] Liu CT, Wu CW, Wang YCF, et al. Spatially and temporally efficient non-local attention network for video-based person
re-identification. arXiv: 1908.01683.
[17] Chen GY, Lu JW, Yang M, et al. Spatial-temporal attention-aware learning for video-based person re-identification. IEEE Trans.
on Image Processing, 2019,28(9):4192−4205. [doi: 10.1109/TIP.2019.2908062]
[18] Rao YM, Lu JW, Zhou J. Learning discriminative aggregation network for video-based face recognition and person re-
identification. Int’l Journal of Computer Vision, 2019,127(6-7):701−718. [doi: 10.1007/s11263-018-1135-x]
[19] Lin Y, Dong X, Zheng L, et al. A bottom-up clustering approach to unsupervised person re-identification. In: Proc. of the 33rd
AAAI Conf. on Artificial Intelligence, Vol.33. 2019. 8738−8745. [doi: 10.1609/aaai.v33i01.33018738]
[20] Bak S, Carr P. One-shot metric learning for person re-identification. In: Proc. of the IEEE Int’l Conf. on Computer Vision and
Pattern Recognition. 2017. 2990−2999. [doi: 10.1109/CVPR.2017.171]
[21] Figueira D, Bazzani L, Minh HQ, et al. Semi-supervised multi-feature learning for person re-identification. In: Proc. of the 10th
IEEE Int’l Conf. on Advanced Video and Signal Based Surveillance. 2013. 111−116. [doi: 10.1109/AVSS.2013. 6636625]
[22] Liu X, Song M, Tao D, et al. Semi-supervised coupled dictionary learning for person re-identification. In: Proc. of the IEEE Int’l
Conf. on Computer Vision and Pattern Recognition. 2014. 3550−3557. [doi: 10.1109/CVPR.2014.454]
[23] Ma AJ, Li P. Semi-supervised ranking for re-identification with few labeled image pairs. In: Proc. of the 12th Asian Conf. on
Computer Vision. 2014. 598−613. [doi: 10.1007/978-3-319-16817-3_39]
[24] Zhu X, Jing XY, Yang L, et al. Semi-supervised cross-view projection-based dictionary learning for video-based person
re-identification. IEEE Trans. on Circuits and Systems for Video Technology, 2017,28(10):2599−2611. [doi: 10.1109/TCSVT.
2017.2718036]
[25] Wu Y, Lin Y, Dong X, et al. Progressive learning for person re-identification with one example. IEEE Trans. on Image Processing,
2019,28(6):2872−2881. [doi: 10.1109/TIP.2019.2891895]
[26] Ristani E, Solera F, Zou R, et al. Performance measures and a data set for multi-target, multicamera tracking. In: Proc. of the 14th
European Conf. on Computer Vision. 2016. 17−35. [doi: 10.1007/978-3-319-48881-3_2]
[27] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Proc. of the Neural
Information Processing Systems 25. 2012. 1097−1105. [doi: 10.1145/3065386]
附中文参考文献:
[2] 戴臣超,王洪元,倪彤光,等.基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别.计算机研究与发展,2019,56(8):
1632−1641. [doi: 10.7544/issn1000-1239.2019.20190195]
[3] 丁宗元,王洪元,陈付华,等.基于距离中心化与投影向量学习的行人重识别.计算机研究与发展,2017,54(8):1785−1794. [doi:
10.7544/issn1000-1239.2017.20170014]