Page 263 - 《软件学报》2021年第12期
P. 263

田震  等:深度矩阵分解推荐算法                                                                 3927


         富知识的辅助信息,例如用户年龄、性别、工作和物品类别等,这可能是未来的工作方向.同时,不同种类信息对
         于推荐结果的贡献程度也是不一样的,如何合理地为不同信息赋予权重,也是值得关注的的问题.

         References:
          [1]    He XN, Liao LZ, Zhang HW, Nie LQ, Hu X, Chua TS. Neural collaborative filtering. In: Proc. of the 26th Int’l Conf. on World
             Wide Web. Republic and Canton of Geneva: WWW, 2017. 173−182. [doi: 10.1145/3038912.3052569]
          [2]    He XN, Zhang HW, Kan MY, Chua TS. Fast matrix factorization for online recommendation with implicit feedback. In: Proc. of
             the 39th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM, 2016. 549−558. [doi:
             10.1145/2911451.2911489]
          [3]    Koren Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In: Proc. of the 14th ACM SIGKDD
             Int’l Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2008. 426−434. [doi: 10.1145/1401890.1401944]
          [4]    Steffen R, Christoph F, Zeno G, Lars ST. BPR: Bayesian personalized ranking from implicit feedback. In: Proc. of the 25th Conf.
             on Uncertainty in Artificial Intelligence. Arlington: AUAI, 2009. 452−461.
          [5]    Sarwar B, Karypis G, Konstan J, Riedl J. Incremental singular value decomposition algorithms for highly scalable recommender
             systems. In: Proc. of the 5th Int’l Conf. on Computer and Information Science. 2002. 27−28.
          [6]    Pan R, Zhou YH, Cao B, Liu NN, Lukose RJ, Scholz M, Yang Q. One-class collaborative filtering. In: Proc. of the 2008 8th IEEE
             Int’l Conf. on Data Mining. Piscataway: IEEE, 2008. 502−511. [doi: 10.1109/ICDM.2008.16]
          [7]    Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proc. of the
             4th ACM Conf. on Recommender Systems. New York: ACM, 2010. 135−142. [doi: 10.1145/1864708.1864736]
          [8]    Guo L, Ma J, Chen ZM. Trust strength aware social recommendation method. Journal of Computer Research and Development,
             2013,50(9):1805−1813 (in Chinese with English abstract).
          [9]    Sun GF, Wu L, Liu Q, Zhu C, Chen EH. Recommendations based on collaborative filtering by exploiting sequential behaviors.
             Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2721−2733 (in Chinese with English abstract). http://www.jos.org.cn/1000-
             9825/4478.htm [doi: 10.3724/SP.J.1001.2013.04478]
         [10]    Van den Oord A, Dieleman S, Schrauwen B. Deep content-based music recommendation. In: Proc. of the 26th Int’l Conf. on Neural
             Information Processing Systems. Nevada: NIPS, 2013. 2643−2651.
         [11]    Hu Y, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets. In: Proc. of the 2008 8th IEEE Int’l Conf. on
             Data Mining. Piscataway: IEEE, 2008. 263−272. [doi: 10.1109/ICDM.2008.22]
         [12]    Zhang F, Yuan NJ, Lian D, Lian DF, Xie X, Ma WY. Collaborative knowledge base embedding for recommender systems. In: Proc.
             of  the  22nd ACM  SIGKDD  Int’l Conf.  on Knowledge Discovery and Data Mining. New York: ACM,  2016.  353−362. [doi:
             10.1145/2939672.2939673]
         [13]    Wang H, Wang NY, Yeung DY. Collaborative deep learning for recommender systems. In: Proc. of the 21th ACM SIGKDD Int’l
             Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2015. 1235−1244. [doi: 10.1145/2783258.2783273]
         [14]    Zhou J,  Wen J,  Li S,  Zhou  W. From  content text  encoding perspective:  A hybrid deep  matrix factorization  approach for
             recommender system. In: Proc. of the 2019 Int’l Joint  Conf. on  Neural Networks  (IJCNN).  Piscataway: IEEE, 2019. 1−8. [doi:
             10.1109/IJCNN.2019.8852443]
         [15]    Yi B, Shen X, Liu H, Zhang Z, Zhang W, Liu S. Deep matrix factorization with implicit feedback embedding for recommendation
             system. IEEE Trans. on Industrial Informatics, 2019,15(8):4591−4601. [doi: 10.1109/TII.2010.2893284]
         [16]    Ma CS, Li JJ, Pan P, Li GH, Du JB. BDMF: A biased deep matrix factorization model for recommendation. In: Proc. of the 2019
             IEEE  SmartWorld, Ubiquitous  Intelligence & Computing, Advanced & Trusted Computing,  Scalable  Computing  &
             Communications, Cloud & Big Data Computing,  Internet of  People and  Smart City  Innovation.  Piscataway:  IEEE,  2019.
             1039−1045. [doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00201]
         [17]    MovieLens 1M dataset released Feb. 2003. https://grouplens.org/datasets/movielens/1m/
         [18]    Anime dataset released December. 2016. https://www.kaggle.com/CooperUnion/anime-recommendations-database
         [19]    Wakita Y, Oku  K, Kawagoe K.  Toward fashion-brand  recommendation systems using deep-learning: Preliminary  analysis. Int’l
             Journal of Knowledge Engineering, 2016,2(3):128−131. [doi: 10.18178/ijke.2016.2.3.066]
   258   259   260   261   262   263   264   265   266   267   268