Page 164 - 《软件学报》2021年第12期
P. 164
3828 Journal of Software 软件学报 Vol.32, No.12, December 2021
[21] Liu B, Zhang Q, Gielen GGE. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive
optimization problems. IEEE Trans. on Evolutionary Computation, 2014,18(2):180−192.
[22] Pan L, He C, Tian Y, et al. A classification based surrogate-assisted evolutionary algorithm for expensive many-objective
optimization. IEEE Trans. on Evolutionary Computation, 2019,23(1):74−88.
[23] Das I, Dennis JE. Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria
optimization problems. SIAM Journal on Optimization, 1998,8(3):631−657.
[24] Morris, Max D. The design and analysis of computer experiments. Journal of the American Statistical Association, 2004,99(468):
1203−1204.
[25] Mckay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics, 2000,42(1):55−61.
[26] Rasmussen CE. Gaussian processes in machine learning. In: Bousquet O, von Luxburg U, Rätsch G, eds. Proc. of the Advanced
Lectures on Machine Learning (ML 2003). LNCS 3176, Berlin, Heidelberg: Springer-Verlag, 2004. 64−71.
[27] Agrawal RB, Deb K, Agrawal RB. Simulated binary crossover for continuous search space. Complex Systems, 2000,9(3):115−148.
[28] Deb K, Goyal M. A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 1996,
26(4):30−45.
[29] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation,
2000,8(2):173−195.
[30] Deb K, Thiele L, Laumanns M, et al. Scalable multi-objective optimization test problems. In: Proc. of the 2002 Congress on
Evolutionary Computation (CEC 2002). IEEE, 2002. 825−830. [doi: 10.1109/CEC.2002.1007032]
[31] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE
Trans. on Evolutionary Computation, 1999,3(4):257−271.
附中文参考文献:
[1] 公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究.软件学报,2009,20(2):271−289. http://www.jos.org.cn/1000-9825/3483.htm
[doi: 10.3724/SP.J.1001.2009.03483]
孙哲人(1992-),男,硕士生,CCF 专业会 陈志远(1996-),男,硕士生,主要研究领域
员,主要研究领域为智能计算. 为智能计算,RNA 二级机构预测.
黄玉划(1975-),男,博士,副教授,CCF 专
业会员,主要研究领域为智能计算,信息
安全.