Page 163 - 《软件学报》2021年第12期
P. 163
孙哲人 等:面向多目标优化的多样性代理辅助进化算法 3827
References:
[1] Gong MG, Jiao LC, Yang DD, et al. Research on evolutionary multi-objective optimization algorithms. Ruan Jian Xue Bao/ Journal
of Software, 2009,20(2):271−289 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3483.htm [doi: 10. 3724/SP.
J.1001.2009.03483]
[2] Jin Y, Wang H, Chugh T, et al. Data-driven evolutionary optimization: An overview and case studies. IEEE Trans. on Evolutionary
Computation, 2019,23(3):442−458.
[3] Tapia MGC, Coello CAC. Applications of multi-objective evolutionary algorithms in economics and finance: A survey. In: Proc. of
the 2007 IEEE Congress on Evolutionary Computation (CEC 2007). Singapore: IEEE, 2007. 532−539. [doi: 10.1109/cec.2007.
4424516]
[4] Arias-Montano A, Coello CAC, Mezura-Montes E. Multiobjective evolutionary algorithms in aeronautical and aerospace
engineering. IEEE Trans. on Evolutionary Computation, 2012,16(5):662−694. [doi: 10.1109/tevc.2011.2169968]
[5] Ponsich A, Jaimes AL, Coello CAC. A survey on multiobjective evolutionary algorithms for the solution of the portfolio
optimization problem and other finance and economics applications. IEEE Trans. on Evolutionary Computation, 2013,17(3):
321−344. [doi: 10.1109/TEVC.2012.2196800]
[6] Zhang J, Xing L. A survey of multiobjective evolutionary algorithms. In: Proc. of the 2017 IEEE Int’l Conf. on Computational
Science and Engineering (CSE) and IEEE Int’l Conf. on Embedded and Ubiquitous Computing (EUC). Guangzhou: IEEE, 2017.
93−100. [doi: 10.1109/CSE-EUC.2017.27]
[7] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization.
TIK-Report, 2001,103:1−21. [doi: 10.3929/ethz-a-004284029]
[8] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary
Computation, 2002,6(2):182−197.
[9] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach,
Part I: Solving problems with box constraints. IEEE Trans. on Evolutionary Computation, 2014,18(4):577−601.
[10] Zhang Q, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary
Computation, 2008,11(6):712−731.
[11] Zitzler E, Künzli S. Indicator-based selection in multiobjective search. In: Yao X, et al. ed. Proc. of the Parallel Problem Solving
from Nature—PPSN VIII (PPSN 2004). LNCS 3242, Berlin, Heidelberg: Springer-Verlag, 2004. 832−842.
[12] Beume N, Naujoks B, Emmerich M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of
Operational Research, 2007,181(3):1653−1669.
[13] Jin Y. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation,
2011,1(2):61−70.
[14] Wang H, Jin Y, Janson JO. Data-driven surrogate-assisted multi-objective evolutionary optimization of a trauma system. IEEE
Trans. on Evolutionary Computation, 2016,20(6):939−952.
[15] Knowles J. ParEGO: A hybrid algorithm with on-line landscape approximation for expension multiobjective optimization problems.
IEEE Trans. on Evolutionary Computation, 2006,10(1):50−66.
[16] Ponweiser W, Wagner T, Biermann D, et al. Multiobjective optimization on a limited budget of evaluations using model-assisted
s-metric selection. In: Rudolph G, Jansen T, Beume N, Lucas S, Poloni C, eds. Proc. of the Parallel Problem Solving from Nature—
PPSN X (PPSN 2008). LNCS 5199, Berlin, Heidelberg: Springer-Verlag, 2008. 784−794.
[17] Zhang Q, Liu W, Tsang E, et al. Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. on
Evolutionary Computation, 2010,14(3):456−474.
[18] Chugh T, Jin Y, Miettinen K, et al. A surrogate-assisted reference vector guided evolutionary algorithm for computationally
expensive many-objective optimization. IEEE Trans. on Evolutionary Computation, 2016,22(1):129−142.
[19] Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. Journal of Global Optimization,
1998,13(4):455−492.
[20] Zhang Q, Zhou A, Jin Y. RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans.
on Evolutionary Computation, 2008,12(1):41−63.