Page 163 - 《软件学报》2021年第12期
P. 163

孙哲人  等:面向多目标优化的多样性代理辅助进化算法                                                       3827


         References:
          [1]    Gong MG, Jiao LC, Yang DD, et al. Research on evolutionary multi-objective optimization algorithms. Ruan Jian Xue Bao/ Journal
             of Software, 2009,20(2):271−289 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3483.htm [doi: 10. 3724/SP.
             J.1001.2009.03483]
          [2]    Jin Y, Wang H, Chugh T, et al. Data-driven evolutionary optimization: An overview and case studies. IEEE Trans. on Evolutionary
             Computation, 2019,23(3):442−458.
          [3]    Tapia MGC, Coello CAC. Applications of multi-objective evolutionary algorithms in economics and finance: A survey. In: Proc. of
             the  2007 IEEE Congress on Evolutionary Computation (CEC  2007).  Singapore: IEEE,  2007.  532−539. [doi: 10.1109/cec.2007.
             4424516]
          [4]    Arias-Montano A, Coello CAC, Mezura-Montes E. Multiobjective evolutionary algorithms  in aeronautical and aerospace
             engineering. IEEE Trans. on Evolutionary Computation, 2012,16(5):662−694. [doi: 10.1109/tevc.2011.2169968]
          [5]    Ponsich A,  Jaimes AL, Coello CAC.  A survey  on multiobjective evolutionary algorithms  for the  solution  of the  portfolio
             optimization  problem and  other  finance and economics applications.  IEEE Trans.  on Evolutionary Computation,  2013,17(3):
             321−344. [doi: 10.1109/TEVC.2012.2196800]
          [6]    Zhang J, Xing L. A survey of multiobjective evolutionary algorithms. In: Proc. of the 2017 IEEE Int’l Conf. on Computational
             Science and Engineering (CSE) and IEEE Int’l Conf. on Embedded and Ubiquitous Computing (EUC). Guangzhou: IEEE, 2017.
             93−100. [doi: 10.1109/CSE-EUC.2017.27]
          [7]    Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization.
             TIK-Report, 2001,103:1−21. [doi: 10.3929/ethz-a-004284029]
          [8]    Deb K,  Pratap A, Agarwal  S,  et al. A  fast and elitist multiobjective  genetic algorithm: NSGA-II.  IEEE Trans.  on Evolutionary
             Computation, 2002,6(2):182−197.
          [9]    Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach,
             Part I: Solving problems with box constraints. IEEE Trans. on Evolutionary Computation, 2014,18(4):577−601.
         [10]    Zhang Q,  Li  H.  MOEA/D:  A  multiobjective  evolutionary  algorithm based on decomposition. IEEE Trans. on Evolutionary
             Computation, 2008,11(6):712−731.
         [11]    Zitzler E, Künzli S. Indicator-based selection in multiobjective search. In: Yao X, et al. ed. Proc. of the Parallel Problem Solving
             from Nature—PPSN VIII (PPSN 2004). LNCS 3242, Berlin, Heidelberg: Springer-Verlag, 2004. 832−842.
         [12]    Beume N, Naujoks B, Emmerich M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of
             Operational Research, 2007,181(3):1653−1669.
         [13]    Jin Y. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation,
             2011,1(2):61−70.
         [14]    Wang  H, Jin  Y,  Janson JO. Data-driven surrogate-assisted  multi-objective  evolutionary optimization of  a trauma system.  IEEE
             Trans. on Evolutionary Computation, 2016,20(6):939−952.
         [15]    Knowles J. ParEGO: A hybrid algorithm with on-line landscape approximation for expension multiobjective optimization problems.
             IEEE Trans. on Evolutionary Computation, 2006,10(1):50−66.
         [16]    Ponweiser W, Wagner T, Biermann D, et al. Multiobjective optimization on a limited budget of evaluations using model-assisted
             s-metric selection. In: Rudolph G, Jansen T, Beume N, Lucas S, Poloni C, eds. Proc. of the Parallel Problem Solving from Nature—
             PPSN X (PPSN 2008). LNCS 5199, Berlin, Heidelberg: Springer-Verlag, 2008. 784−794.
         [17]    Zhang Q, Liu W, Tsang E, et al. Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. on
             Evolutionary Computation, 2010,14(3):456−474.
         [18]    Chugh  T,  Jin Y, Miettinen K,  et al.  A surrogate-assisted reference vector guided  evolutionary  algorithm for  computationally
             expensive many-objective optimization. IEEE Trans. on Evolutionary Computation, 2016,22(1):129−142.
         [19]    Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. Journal of Global Optimization,
             1998,13(4):455−492.
         [20]    Zhang Q, Zhou A, Jin Y. RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans.
             on Evolutionary Computation, 2008,12(1):41−63.
   158   159   160   161   162   163   164   165   166   167   168