Page 46 - 《软件学报》2021年第8期
P. 46
2328 Journal of Software 软件学报 Vol.32, No.8, August 2021
[11] Mittal S, Vetter JS. A Survey of CPU-GPU heterogeneous computing techniques. ACM Computing Surveys, 2015,47(4):Article 69.
[12] Tomov S, Dongarra J, Baboulin M. Towards dense linear algebra for hybrid GPU accelerated manycore systems. Parallel
Computing, 2010,36(5-6):232−240.
[13] Tan GM, Li LC, Triechle S, Phillips E, Bao YG, Sun NH. Fast implementation of DGEMM on Fermi GPU. In: Proc. of the 2011
ACM/IEEE Int’l Conf. for High Performance Computing, Networking, Storage and Analysis (SC). IEEE, 2011.1−11.
[14] Dongarra J, van de Geijn R, Walker D. Scalability issues affecting the design of a dense linear algebra library. Journal of Parallel
and Distributed Computing, 1994,22(3):523−537.
[15] Li JJ, Li XJ, Tang GM. Research of DGEMM performance on CPU/ATI GPU heterogeneous architecture. Information Technology
Letter, 2011,9(6):12−27 (in Chinese).
[16] Chou CY, Chang HY, Wang ST, Huang KC, Shen CY. An Improved Model for Predicting HPL Performance. In: Proc. of the 2nd
Int’l Conf. on Advances in grid and pervasive computing. Springer-Verlag, 2007. 158−168.
[17] Yu XZ. An optimized large-scale hybrid DGEMM design for CPUs and ATI GPUs [MS. Thesis]. Beijing: Institute of Computing
Technology, Chinese Academy of Sciences, 2019 (in Chinese with English abstract).
[18] Wang S, Qi FB, Gu HF, Pan Z. Linpack parallel performance model and its prediction. Computer Engineering, 2012,38(16):81−84
(in Chinese with English abstract).
[19] Zhang WL, Chen MY, Fan JP. Emulation and Forecast of HPL Test Performance. Journal of Computer Research and Development,
2006,43(3):557−562 (in Chinese with English abstract).
[20] Summit. 2019. https://www.olcf.ornl.gov/summit/
[21] Sierra. 2019. https://hpc.llnl.gov/hardware/platforms/sierra
[22] ABCI. 2019. http://abci.ai/
附中文参考文献:
[15] 李佳佳,李兴建,谭光明.CPU/ATI GPU 混合体系结构上 DGEMM 的性能研究.信息技术快报,2011,9(6):12−27.
[17] 于献智.面向 E 级计算的大规模 HPL 算法设计与实现[硕士学位论文].北京:中国科学院计算技术研究所,2019.
[18] 王申,漆锋滨,谷洪峰,潘治.Linpack 并行性能模型及其预测.计算机工程,2012,38(16):81−84.
[19] 张文力,陈明宇,樊建平.HPL 测试性能仿真与预测.计算机研究与发展,2006,43(3):557−562.
水超洋(1994-),男,博士生,主要研究领域 王银山(1988-),男,博士,副研究员,CCF
为稠密矩阵乘法优化,稀疏张量优化. 专业会员,主要研究领域为数值模拟,大规
模并行计算,稀疏矩阵计算优化.
于献智(1994-),男,硕士,主要研究领域为 谭光明(1980-),男,博士,研究员,博士生
异构高性能计算. 导师,CCF 高级会员,主要研究领域为并行
算法设计与分析,并行编程和优化,计算机
体系结构,生物信息学,大数据.