Page 157 - 《软件学报》2021年第7期
P. 157

朱向雷  等:自动驾驶智能系统测试研究综述                                                           2075


                [35]    Wang Z, Yan M, Liu S, Chen JJ, Zhang DD, Wu Z, Chen X. Survey on testing of deep neural networks. Ruan Jian Xue Bao/Journal
                     of Software, 2020,31(5):1255−1275 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5951.htm [doi: 10.13328/
                     j.cnki.jos.005951]
                [36]    Pei K, Cao Y, Yang J, et al. Deepxplore: Automated whitebox testing of deep learning systems. In: Proc. of the 26th Symp. on
                     Operating Systems Principles. 2017. 1–18.
                [37]    Laurent T, Arcaini P, Ishikawa F, et al. A mutation-based approach for assessing weight coverage of a path planner. In: Proc. of the
                     26th Asia-Pacific Software Engineering Conf. (APSEC). IEEE, 2019. 94–101.
                [38]    Bühler O, Wegener J. Automatic testing of an autonomous parking system using evolutionary computation. SAE Technical Report,
                     2004.
                [39]    Bühler O, Wegener J. Evolutionary functional testing. Computers & Operations Research, 2008,35(10):3144–3160.
                [40]    Abdessalem RB, Nejati S, Briand LC, et al. Testing vision-based control systems using learnable evolutionary algorithms. In: Proc.
                     of the 40th IEEE/ACM Int’l Conf. on Software Engineering (ICSE). IEEE, 2018. 1016–1026.
                [41]    Deb K,  Pratap A, Agarwal  S,  et al. A  fast and elitist multiobjective  genetic algorithm: NSGA-II.  IEEE  Trans.  on Evolutionary
                     Computation, 2002,6(2):182–197.
                [42]    Beyer HG, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Trans. on Evolutionary Computation,
                     2001,5(3):250–270.
                [43]    Deb K, Agrawal RB. Simulated binary crossover for continuous search space. Complex Systems, 1995,9(2):115–148.
                [44]    Knowles JD, Thiele L, Zitzler E. A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK-Report,
                     2006. 214.
                [45]    Abdessalem RB, Nejati S, Briand LC, et al. Testing advanced driver assistance systems using multi-objective search and neural
                     networks. In: Proc. of the 31st IEEE/ACM Int’l Conf. on Automated Software Engineering. 2016. 63–74.
                [46]    Abdessalem RB, Panichella A, Nejati S, et al. Testing autonomous cars for feature interaction failures using many-objective search.
                     In: Proc. of the 33rd IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). IEEE, 2018. 143–154.
                [47]    Panichella A, Kifetew FM, Tonella P. Reformulating branch coverage as a many-objective optimization problem. In: Proc. of the
                     8th IEEE Int’l Conf. on Software Testing, Verification and Validation (ICST). IEEE, 2015. 1–10.
                [48]    Gietelink O, Ploeg J, De Schutter B, et al. Development of advanced driver assistance systems with vehicle hardware-in-the-loop
                     simulations. Vehicle System Dynamics, 2006,44(7):569–590.
                [49]    Belbachir A, Smal JC, Blosseville JM, et al. Simulation-driven validation of advanced driving-assistance systems. Procedia-social
                     and Behavioral Sciences, 2012,48:1205–1214.
                [50]    Gruyer D, Glaser S, Pechberti S, et al. Distributed simulation architecture for the design of cooperative ADAS. In: Proc. of the 1st
                     Int’l Symp. on Future Active Safety Technology Toward Zero-traffic-accident. 2011.
                [51]    Hiblot N, Gruyer D, Barreiro  JS,  et al. Pro-sivic  and roads—a software  suite for sensors simulation  and virtual prototyping of
                     ADAS. In: Proc. of the DSC. 2010. 277–288.
                [52]    Abdessalem Ben R, Panichella A, Nejati S, et al. Automated repair of feature interaction failures in automated driving systems. In:
                     Proc. of the 29th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis (ISSTA 2020). 2020.
                [53]    Jones JA, Harrold MJ, Stasko J. Visualization of test information to assist fault localization. In: Proc. of the 24th Int’l Conf. on
                     Software Engineering (ICSE 2002). IEEE, 2002. 467–477.
                [54]    Gambi A, Mueller M, Fraser G. Automatically testing self-driving cars with search-based procedural content generation. In: Proc. of
                     the 28th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. 2019. 318–328.
                [55]    China Automotive Technology and Research Center Co., Ltd. Development and Application of Autonomous Driving Test Scenario
                     Technology. Beijing: China Machine Press, 2020 (in Chinese).
                [56]    Ulbrich S, Menzel T, Reschka A, et al. Defining and substantiating the terms scene, situation, and scenario for automated driving.
                     In: Proc. of the 18th IEEE Int’l Conf. on Intelligent Transportation Systems. IEEE, 2015. 982–988.
                [57]    Zhang C, Liu Y, Zhao D, et al. RoadView: A traffic scene simulator for autonomous vehicle simulation testing. In: Proc. of the 17th
                     Int’l IEEE Conf. on Intelligent Transportation Systems (ITSC). IEEE, 2014. 1160–1165.
                [58]    Althoff M, Lutz S. Automatic generation of safety-critical test scenarios for collision avoidance of road vehicles. In: Proc. of the
                     2018 IEEE Intelligent Vehicles Symp. (IV). IEEE, 2018. 1326–1333.
                [59]    Althoff M, Koschi M, Manzinger S. CommonRoad: Composable benchmarks for motion planning on roads. In: Proc. of the 2017
                     IEEE Intelligent Vehicles Symp. (IV). IEEE, 2017. 719–726.
   152   153   154   155   156   157   158   159   160   161   162