Page 156 - 《软件学报》2021年第7期
P. 156

2074                                     Journal of Software  软件学报 Vol.32, No.7,  July 2021

                [10]    Lu J, Sibai H, Fabry  E,  et al.  No need to  worry  about  adversarial  examples in object detection in  autonomous vehicles.  arXiv
                     Preprint arXiv: 1707.03501, 2017.
                [11]    Daftry S, Zeng S, Bagnell JA, et al. Introspective perception: Learning to predict failures in vision systems. In: Proc. of the 2016
                     IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS). IEEE, 2016. 1743–1750.
                [12]    Gurău C, Rao D, Tong CH, et al. Learn from experience: Probabilistic prediction of perception performance to avoid failure. The
                     Int’l Journal of Robotics Research, 2018,37(9):981–995.
                [13]    Ramanagopal MS, Anderson C, Vasudevan R, et al. Failing to learn: Autonomously identifying perception failures for self-driving
                     cars. IEEE Robotics and Automation Letters, 2018,3(4):3860–3867.
                [14]    Johnson-Roberson M, Barto C, Mehta R, et al. Driving in the matrix: Can virtual worlds replace human-generated annotations for
                     real world tasks? arXiv Preprint arXiv: 1610.01983, 2016.
                [15]    Dreossi T, Ghosh S, Sangiovanni-Vincentelli A, et al. Systematic testing of convolutional neural networks for autonomous driving.
                     arXiv Preprint arXiv: 1708.03309, 2017.
                [16]    Papernot N, McDaniel P, Jha S, et al. The limitations of deep learning in adversarial settings. In: Proc. of the 2016 IEEE European
                     Symp. on Security and Privacy (EuroS&P). IEEE, 2016. 372–387.
                [17]    Talwar D, Guruswamy S, Ravipati N, et al. Evaluating validity of synthetic data in perception tasks for autonomous vehicles. In:
                     Proc. of the 2020 IEEE Int’l Conf. on Artificial Intelligence Testing (AITest). IEEE, 2020. 73–80.
                [18]    LGSVL Simulator. 2019. https://github.com/lgsvl/simulator-2019.05-obsolete
                [19]    Araiza-Illan D, Pipe AG, Eder K. Model-based test generation for robotic software: Automata versus belief-desire-intention agents.
                     arXiv Preprint arXiv: 1609.08439, 2016.
                [20]    Bordini RH, Hübner JF, Wooldridge M. Programming Multi-agent Systems in AgentSpeak using Jason. John Wiley & Sons, 2007.
                [21]    Cordts M, Omran M, Ramos S, et al. The cityscapes dataset for semantic urban scene understanding. In: Proc. of the IEEE Conf. on
                     Computer Vision and Pattern Recognition. 2016. 3213–3223.
                [22]     China Automotive Technology and Research Center Co., Ltd. Intelligent Connected Vehicle Technology. 2nd ed., Beijing: Social
                     Science Academic Press, 2020 (in Chinese).
                [23]    Schultz AC, Grefenstette JJ, De Jong KA. Adaptive testing of controllers for autonomous vehicles. In: Proc. of the 1992 Symp. on
                     Autonomous Underwater Vehicle Technology. IEEE, 1992. 158–164.
                [24]    Tuncali CE, Pavlic TP, Fainekos G. Utilizing S-TaLiRo as an automatic test generation framework for autonomous vehicles. In:
                     Proc. of the 19th IEEE Int’l Conf. on Intelligent Transportation Systems (ITSC). IEEE, 2016. 1470–1475.
                [25]    Mullins GE, Stankiewicz PG,  Gupta  SK.  Automated generation of diverse and  challenging scenarios for test  and evaluation of
                     autonomous vehicles. In: Proc. of the 2017 IEEE Int’l Conf. on Robotics and Automation (ICRA). IEEE, 2017. 1443–1450.
                [26]    Koren M, Alsaif S, Lee R, et al. Adaptive stress testing for autonomous vehicles. In: Proc. of the 2018 IEEE Intelligent Vehicles
                     Symposium (IV). IEEE, 2018. 1–7.
                [27]    Zhou H, Li W, Zhu Y, et al. Deepbillboard: Systematic physical-world testing of autonomous driving systems. arXiv Preprint arXiv:
                     1812.10812, 2018.
                [28]    Tian Y, Pei K, Jana S, et al. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In: Proc. of the 40th Int’l
                     Conf. on Software Engineering. 2018. 303–314.
                [29]    Zhang M, Zhang Y, Zhang L, et al. DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous
                     driving systems. In: Proc. of the 33rd IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). IEEE, 2018. 132–142.
                [30]    Stocco A, Weiss M, Calzana M, et al. Misbehaviour prediction for autonomous driving systems. arXiv Preprint arXiv: 1910.04443,
                     2019.
                [31]    D’Ambrosio J, Adiththan A, Ordoukhanian E, et al. An MBSE approach for development of resilient automated automotive systems.
                     Systems, 2019,7(1):1.
                [32]    Crombecq K, De Tommasi L, Gorissen D, et al. A novel sequential design strategy for global surrogate modeling. In: Proc. of the
                     Winter Simulation Conf. 2009. 731–742.
                [33]    Treiber  M,  Hennecke A,  Helbing D.  Congested traffic states in  empirical observations  and  microscopic simulations. Physical
                     Review E, 2000,62(2):1805.
                [34]    Alhaija HA, Mustikovela SK, Mescheder L, et al. Augmented reality meets computer vision: Efficient data generation for urban
                     driving scenes. Int’l Journal of Computer Vision, 2018,126(9):961–972.
   151   152   153   154   155   156   157   158   159   160   161