Page 321 - 《软件学报》2021年第5期
P. 321

马钰锡  等:面向智能攻击的行为预测研究                                                            1545


                [45]    Hernández A, Sanchez V, Sánchez G, et al. Security attack prediction based on user sentiment analysis of Twitter data. In: Proc. of
                     the 2016 IEEE Int’l Conf. on Industrial Technology (ICIT). IEEE, 2016. 610−617.
                [46]    Banerjee M, Agarwal B, Samantaray SD. An integrated approach for botnet detection and prediction using honeynet and socialnet
                     data. In: Proc. of  the Int’l  Conf. on  Intelligent  Computing  and Smart Communication 2019. Singapore: Springer-Verlag, 2020.
                     423−431.
                [47]    Lim H, Kim W, Noh H, et al. Research on malware classification with network activity for classification and attack prediction of
                     attack groups. Journal of the Korean Institute of Communication Sciences, 2017,42(1):193−204.
                [48]    Vaishnavi N, Thiyagarajan K. A study on prediction of malicious program using classification based approches. Int’l Journal of
                     Computer Science and Mobile Computing, 2018,7(5):38−46.
                [49]    Wang Z, Gao HZ, Zhang YM, et al. Fortifying botnet classification based on venn-abers prediction. In: Proc. of the 2017 2nd Int’l
                     Conf. on Computer Science and Technology (CST 2017). 2017.
                [50]    Mursleen M, Bist  AS, Kishore  J. A  support  vector machine water wave  optimization algorithm  based  prediction model for
                     metamorphic malware detection. Int’l Journal of Recent Technology and Engineering, 2019,7:1−8.
                [51]    Roseline SA, Sasisri AD, Geetha S, et al. Towards efficient malware detection and classification using multilayered random forest
                     ensemble technique. In: Proc. of the 2019 Int’l Carnahan Conf. on Security Technology (ICCST). IEEE, 2019. 1−6.
                [52]    Kou G, Wang S, Tang G. Research on key technologies of network security situational awareness for attack tracking prediction.
                     Chinese Journal of Electronics, 2019,28(1):162−171.
                [53]    Hopfield JJ. Artificial neural networks. IEEE Circuits and Devices Magazine, 1988,4(5):3−10.
                [54]    Khashei M, Bijari M. An artificial neural  network  (p,d,q)  model for timeseries forecasting.  Expert Systems  with  applications,
                     2010,37(1):479−489.
                [55]    Rhode M, Burnap P, Jones K. Early-stage malware prediction using recurrent neural networks. Computers & Security, 2018,77:
                     578−594.
                [56]    Sundermeyer M, Schlüter R, Ney H. LSTM neural networks for language modeling. In: Proc. of the Interspeech. 2012. 601−608.
                [57]    Fang X, Xu  M,  Xu S,  et  al.  A deep learning framework for predicting  cyber  attacks rates. EURASIP  Journal on  Information
                     Security, 2019,2019(1):Article No.5. [doi: 10.1186/s13635-019-0090-6]
                [58]    Fan S, Wu S, Wang Z, et al. ALEAP: Attention-based LSTM with event embedding for attack projection. In: Proc. of the 2019
                     IEEE 38th Int’l Performance Computing and Communications Conf. (IPCCC). IEEE, 2019. 1−8.
                [59]    Hasan KMZ, Hasan MZ, Zahan N. Automated prediction of phishing websites using deep convolutional neural network. In: Proc.
                     of the 2019  Int’l  Conf. on  Computer,  Communication, Chemical, Materials  and  Electronic Engineering (IC4ME2). IEEE, 2019.
                     1−4.
                [60]    Roughgarden T. Algorithmic game theory. Communications of the ACM, 2010,53(7):78−86.
                [61]    Zhang Y, Liu J. Optimal decision-making approach for cyber security defense using game theory and intelligent learning. Security
                     and Communication Networks, 2019,2019(2):1−16.
                [62]    Phillips C, Swiler LP. A graph-based system for network-vulnerability analysis. In: Proc. of the ’98 Workshop on New Security
                     Paradigms (NSPW’98). New York: Association for Computing Machinery, 1998. 71−79.
                [63]    Abaid Z, Sarkar D, Kaafar MA, et al. The early bird gets the botnet: A Markov chain based early warning system for botnet attacks.
                     In: Proc. of the 2016 IEEE 41st Conf. on Local Computer Networks (LCN). IEEE, 2016. 61−68.
                [64]    Han J, Kamber M, Pei J. Data mining: Concepts and techniques third edition. The Morgan Kaufmann Series in Data Management
                     Systems, 2011,5(4):83−124.
                [65]    Mohammad RM, Thabtah F, McCluskey L. Intelligent rule-based phishing websites classification. IET Information Security, 2014,
                     8(3):153−160.
                [66]    Al-diabat M.  Detection  and prediction of phishing websites using  classification  mining techniques. Int’l Journal of  Computer
                     Applications, 2016,147(5):5−11.
                [67]    Lin YS,  Jiang JY, Lee  SJ. A  similarity measure  for  text classification and clustering.  IEEE Trans.  on Knowledge and Data
                     Engineering, 2013,26(7):1575−1590.
   316   317   318   319   320   321   322   323   324   325   326