Page 319 - 《软件学报》2021年第5期
P. 319

马钰锡  等:面向智能攻击的行为预测研究                                                            1543


                 国防军事等造成了极大的威胁.行为预测根据历史报警信息预测未来即将发生的攻击动作,并建立机器的自动
                 感知和自学习机制,能够有效预防智能攻击,提高系统的安全性.本文对面向智能攻击的行为预测方法进行了全
                 面的调查和论述,界定了智能攻击行为预测的问题域,对其相关的研究领域进行了概述;梳理了面向智能攻击的
                 行为预测的研究方法和相关工作,并进行分类和详细介绍;分别阐述了不同种类预测方法的原理机制,从特征及
                 适应范围等角度做进一步对比和分析;展望了智能攻击行为预测的挑战和未来研究方向,为之后对智能攻击行
                 为预测的研究提供了新的思路,对于今后该领域的继续和深入研究具有一定的参考意义.

                 References:
                 [1]    Acemoglu D, Restrepo P. Artificial Intelligence, Automation and Work. Social Science Electronic Publishing, 2018.
                 [2]    Falco G, Viswanathan A, Caldera C, et al. A master attack methodology for an ai-based automated attack planner for smart cities.
                     IEEE Access, 2018,6:48360−48373.
                 [3]    Meng Y, Tu S, Yu J, et al. Intelligent attack defense scheme based on DQL algorithm in mobile fog computing. Journal of Visual
                     Communication and Image Representation, 2019,65:Article No.102656.
                 [4]    Ranjbar MH, Kheradmandi M, Pirayesh A. Assigning operating reserves in power systems under imminent intelligent attack threat.
                     IEEE Trans. on Power Systems, 2019,34(4):2768−2777.
                 [5]    Zhang R, Chen X, Wen S, et al. Using AI to attack VA: A stealthy spyware against voice assistances in smart phones. IEEE Access,
                     2019,7:153542−153554.
                 [6]    Nazer TH, Xue G,  Ji  Y,  et  al. Intelligent disaster response via social  media  analysis  a  survey.  ACM SIGKDD  Explorations
                     Newsletter, 2017,19(1):46−59.
                 [7]    Qiu S, Liu Q, Zhou S, et al. Review of artificial intelligence adversarial attack and defense technologies. Applied Sciences, 2019,
                     9(5):Article No.909.
                 [8]    Xu H, Ma Y, Liu H, et al. Adversarial attacks and defenses in images, graphs and text: A review. arXiv preprint arXiv:1909.08072,
                     2019.
                 [9]    Husák M, Komárková  J, Bou-Harb E,  et  al. Survey  of  attack projection, prediction,  and forecasting in  cyber security. IEEE
                     Communications Surveys & Tutorials, 2018,21(1):640−660.
                [10]    Jia YJ, Lu Y, Shen J, et al. Fooling detection alone is not enough: Adversarial attack against multiple object tracking. In: Proc. of
                     the Int’l Conf. on Learning Representations (ICLR 2020). 2020.
                [11]    Ren K, Zheng T, Qin Z, et al. Adversarial attacks and defenses in deep learning. Engineering, 2020,6(3):346−360.
                [12]    Li C, Zhou W, Yu K, et al. Enhanced secure transmission against intelligent attacks. IEEE Access, 2019,7:53596−53602.
                [13]    Zhang C, Benz P, Lin C, et al. A survey on universal adversarial attack. arXiv preprint arXiv:2103.01498, 2021.
                [14]    Subasi A, Molah E, Almkallawi F, et al. Intelligent phishing website detection using random forest classifier. In: Proc. of the 2017
                     Int’l Conf. on Electrical and Computing Technologies and Applications (ICECTA). IEEE, 2017. 1−5.
                [15]    Jiang F, Fu Y, Gupta BB, et al. Deep learning based multi-channel intelligent attack detection for data security. IEEE Trans. on
                     Sustainable Computing, 2018,5(2):204−212.
                [16]    Conti M, Dargahi T, Dehghantanha A. Cyber Threat  Intelligence: Challenges and Opportunities.  In: Cyber Threat  Intelligence.
                     Cham: Springer-Verlag, 2018. 1−6.
                [17]    Yi P, Wang KD, Huang C, et al. Adversarial attacks in artificial intelligence: A survey. Journal of Shanghai Jiaotong University,
                     2018,52(10):172−180 (in Chinese with English abstract).
                [18]    Khalid F, Hanif MA, Rehman S, et al. FAdeML: Understanding the impact of pre-processing noise filtering on adversarial machine
                     learning. In: Proc. of the 2019 Design, Automation & Test in Europe Conf. & Exhibition (DATE). IEEE, 2019. 902−907.
                [19]    Johnson J. Artificial intelligence, drone swarming and escalation risks in future warfare. The RUSI Journal, 2020,165(2):26−36.
                [20]    Chaudhary P, Gupta BB, Gupta S. A framework for preserving the privacy of online users against XSS worms on online social
                     network. Int’l Journal of Information Technology and Web Engineering (IJITWE), 2019,14(1):85−111.
                [21]    Ren Z, Chen  G, Lu W. Malware  visualization methods  based  on  deep  convolution  neural  networks. Multimedia Tools and
                     Applications, 2020,79:10975−10993.
   314   315   316   317   318   319   320   321   322   323   324