Page 319 - 《软件学报》2021年第5期
P. 319
马钰锡 等:面向智能攻击的行为预测研究 1543
国防军事等造成了极大的威胁.行为预测根据历史报警信息预测未来即将发生的攻击动作,并建立机器的自动
感知和自学习机制,能够有效预防智能攻击,提高系统的安全性.本文对面向智能攻击的行为预测方法进行了全
面的调查和论述,界定了智能攻击行为预测的问题域,对其相关的研究领域进行了概述;梳理了面向智能攻击的
行为预测的研究方法和相关工作,并进行分类和详细介绍;分别阐述了不同种类预测方法的原理机制,从特征及
适应范围等角度做进一步对比和分析;展望了智能攻击行为预测的挑战和未来研究方向,为之后对智能攻击行
为预测的研究提供了新的思路,对于今后该领域的继续和深入研究具有一定的参考意义.
References:
[1] Acemoglu D, Restrepo P. Artificial Intelligence, Automation and Work. Social Science Electronic Publishing, 2018.
[2] Falco G, Viswanathan A, Caldera C, et al. A master attack methodology for an ai-based automated attack planner for smart cities.
IEEE Access, 2018,6:48360−48373.
[3] Meng Y, Tu S, Yu J, et al. Intelligent attack defense scheme based on DQL algorithm in mobile fog computing. Journal of Visual
Communication and Image Representation, 2019,65:Article No.102656.
[4] Ranjbar MH, Kheradmandi M, Pirayesh A. Assigning operating reserves in power systems under imminent intelligent attack threat.
IEEE Trans. on Power Systems, 2019,34(4):2768−2777.
[5] Zhang R, Chen X, Wen S, et al. Using AI to attack VA: A stealthy spyware against voice assistances in smart phones. IEEE Access,
2019,7:153542−153554.
[6] Nazer TH, Xue G, Ji Y, et al. Intelligent disaster response via social media analysis a survey. ACM SIGKDD Explorations
Newsletter, 2017,19(1):46−59.
[7] Qiu S, Liu Q, Zhou S, et al. Review of artificial intelligence adversarial attack and defense technologies. Applied Sciences, 2019,
9(5):Article No.909.
[8] Xu H, Ma Y, Liu H, et al. Adversarial attacks and defenses in images, graphs and text: A review. arXiv preprint arXiv:1909.08072,
2019.
[9] Husák M, Komárková J, Bou-Harb E, et al. Survey of attack projection, prediction, and forecasting in cyber security. IEEE
Communications Surveys & Tutorials, 2018,21(1):640−660.
[10] Jia YJ, Lu Y, Shen J, et al. Fooling detection alone is not enough: Adversarial attack against multiple object tracking. In: Proc. of
the Int’l Conf. on Learning Representations (ICLR 2020). 2020.
[11] Ren K, Zheng T, Qin Z, et al. Adversarial attacks and defenses in deep learning. Engineering, 2020,6(3):346−360.
[12] Li C, Zhou W, Yu K, et al. Enhanced secure transmission against intelligent attacks. IEEE Access, 2019,7:53596−53602.
[13] Zhang C, Benz P, Lin C, et al. A survey on universal adversarial attack. arXiv preprint arXiv:2103.01498, 2021.
[14] Subasi A, Molah E, Almkallawi F, et al. Intelligent phishing website detection using random forest classifier. In: Proc. of the 2017
Int’l Conf. on Electrical and Computing Technologies and Applications (ICECTA). IEEE, 2017. 1−5.
[15] Jiang F, Fu Y, Gupta BB, et al. Deep learning based multi-channel intelligent attack detection for data security. IEEE Trans. on
Sustainable Computing, 2018,5(2):204−212.
[16] Conti M, Dargahi T, Dehghantanha A. Cyber Threat Intelligence: Challenges and Opportunities. In: Cyber Threat Intelligence.
Cham: Springer-Verlag, 2018. 1−6.
[17] Yi P, Wang KD, Huang C, et al. Adversarial attacks in artificial intelligence: A survey. Journal of Shanghai Jiaotong University,
2018,52(10):172−180 (in Chinese with English abstract).
[18] Khalid F, Hanif MA, Rehman S, et al. FAdeML: Understanding the impact of pre-processing noise filtering on adversarial machine
learning. In: Proc. of the 2019 Design, Automation & Test in Europe Conf. & Exhibition (DATE). IEEE, 2019. 902−907.
[19] Johnson J. Artificial intelligence, drone swarming and escalation risks in future warfare. The RUSI Journal, 2020,165(2):26−36.
[20] Chaudhary P, Gupta BB, Gupta S. A framework for preserving the privacy of online users against XSS worms on online social
network. Int’l Journal of Information Technology and Web Engineering (IJITWE), 2019,14(1):85−111.
[21] Ren Z, Chen G, Lu W. Malware visualization methods based on deep convolution neural networks. Multimedia Tools and
Applications, 2020,79:10975−10993.