Page 270 - 《软件学报》2021年第5期
P. 270

1494                                     Journal of Software  软件学报 Vol.32, No.5,  May 2021

                [24]    Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: A gravitational search algorithm. Intelligent Information Management, 2012,
                     4(6):390−395.
                [25]    Yazdani S, Nezamabadi-Pour H, Kamyab S. A gravitational search algorithm for multimodal optimization. Swarm & Evolutionary
                     Computation, 2014,14:1−14.
                [26]    Zhao FQ, Xue FL, Zhang Y, Ma W, Zhang C, Song HB. A hybrid algorithm based on self-adaptive gravitational search algorithm
                     and differential evolution. Expert Systems with Applications, 2018,113:515−530.
                [27]    Wang F, He XS, Luo L, Wang Y. Hybrid optimization algorithm of PSO and cuckoo search. In: Proc. of the Int’l Conf. on Artificial
                     Intelligence, Management Science and Electronic Commerce. Dengfeng: IEEE, 2011. 1172−1175.
                [28]    Borshevsky M. Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Trans. on Evolutionary
                     Computation, 2016,20(5):814−819.
                [29]    Li X, Wang J, Yin M. Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Computing
                     & Applications, 2014,24(6):1233−1247.
                [30]    Naik MK, Panda R. A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition. Applied
                     Soft Computing, 2016,38:661−675.
                [31]    Ding XM, Xu ZK, Cheung NJ, Liu XH. Parameter estimation of TakagiSugeno fuzzy system using heterogeneous cuckoo search
                     algorithm. Neurocomputing, 2015,151:1332−1342.
                [32]    Wang LJ, Zhong YW, Yin YL. Nearest neighbour cuckoo search algorithm with probabilistic mutation. Applied Soft Computing,
                     2016,49:498−509.
                [33]    Ozturk C, Hancer E, Karaboga D. A novel binary artificial bee colony algorithm based on genetic operators. Information Sciences,
                     2015,297:154−170.
                [34]    Cui LZ, Li GH, Zhu ZX, Lin QZ, Wen ZK, Lu N, Wong KC, Chen JY. A novel artificial bee colony algorithm with an adaptive
                     population size for numerical function optimization. Information Sciences, 2017,414:53−67.

                 附中文参考文献:
                 [16]  王李进,尹义龙,钟一文.逐维改进的布谷鸟搜索算法.软件学报,2013,24(11):2687−2698. http://www.jos.org.cn/1000-9825/4476.
                     htm [doi: 10.3724/SP.J.1001.2013.04476]
                 [23]  马卫,孙正兴.采用搜索趋化策略的布谷鸟全局优化算法.电子学报,2015,43(12):2429−2439.



                              傅文渊(1982-),男,硕士,主要研究领域为
                              智能信号优化与智能学习控制,电路与系
                              统设计,嵌入式系统设计.
   265   266   267   268   269   270   271   272   273   274   275