Page 270 - 《软件学报》2021年第5期
P. 270
1494 Journal of Software 软件学报 Vol.32, No.5, May 2021
[24] Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: A gravitational search algorithm. Intelligent Information Management, 2012,
4(6):390−395.
[25] Yazdani S, Nezamabadi-Pour H, Kamyab S. A gravitational search algorithm for multimodal optimization. Swarm & Evolutionary
Computation, 2014,14:1−14.
[26] Zhao FQ, Xue FL, Zhang Y, Ma W, Zhang C, Song HB. A hybrid algorithm based on self-adaptive gravitational search algorithm
and differential evolution. Expert Systems with Applications, 2018,113:515−530.
[27] Wang F, He XS, Luo L, Wang Y. Hybrid optimization algorithm of PSO and cuckoo search. In: Proc. of the Int’l Conf. on Artificial
Intelligence, Management Science and Electronic Commerce. Dengfeng: IEEE, 2011. 1172−1175.
[28] Borshevsky M. Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Trans. on Evolutionary
Computation, 2016,20(5):814−819.
[29] Li X, Wang J, Yin M. Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Computing
& Applications, 2014,24(6):1233−1247.
[30] Naik MK, Panda R. A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition. Applied
Soft Computing, 2016,38:661−675.
[31] Ding XM, Xu ZK, Cheung NJ, Liu XH. Parameter estimation of TakagiSugeno fuzzy system using heterogeneous cuckoo search
algorithm. Neurocomputing, 2015,151:1332−1342.
[32] Wang LJ, Zhong YW, Yin YL. Nearest neighbour cuckoo search algorithm with probabilistic mutation. Applied Soft Computing,
2016,49:498−509.
[33] Ozturk C, Hancer E, Karaboga D. A novel binary artificial bee colony algorithm based on genetic operators. Information Sciences,
2015,297:154−170.
[34] Cui LZ, Li GH, Zhu ZX, Lin QZ, Wen ZK, Lu N, Wong KC, Chen JY. A novel artificial bee colony algorithm with an adaptive
population size for numerical function optimization. Information Sciences, 2017,414:53−67.
附中文参考文献:
[16] 王李进,尹义龙,钟一文.逐维改进的布谷鸟搜索算法.软件学报,2013,24(11):2687−2698. http://www.jos.org.cn/1000-9825/4476.
htm [doi: 10.3724/SP.J.1001.2013.04476]
[23] 马卫,孙正兴.采用搜索趋化策略的布谷鸟全局优化算法.电子学报,2015,43(12):2429−2439.
傅文渊(1982-),男,硕士,主要研究领域为
智能信号优化与智能学习控制,电路与系
统设计,嵌入式系统设计.