Page 256 - 《软件学报》2021年第5期
P. 256

软件学报 ISSN 1000-9825, CODEN RUXUEW                                       E-mail: jos@iscas.ac.cn
                 Journal of Software,2021,32(5):1480−1494 [doi: 10.13328/j.cnki.jos.006056]   http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                         Tel: +86-10-62562563


                                                                    ∗
                 具有万有引力加速机理的布谷鸟搜索算法

                 傅文渊  1,2,3

                 1
                 (华侨大学  信息科学与工程学院,福建  厦门  361021)
                 2
                 (厦门市专用集成电路系统重点实验室(华侨大学),福建  厦门   361008)
                 3 (福建省电机控制与系统优化调度工程技术研究中心,福建  厦门   361002)
                 通讯作者:  傅文渊, E-mail: fwy@hqu.edu.cn

                 摘   要:  为了解决布谷鸟搜索算法收敛速度较低、全局收敛效率不高的问题,提出了具有万有引力加速机理的布
                 谷鸟算法.该算法基于万有引力搜索无需学习外部环境因素的变化亦能感知全局最优的特点,将布谷鸟巢穴等价为
                 不同质量的个体,使其在优化过程中不仅遵循 Levy 飞行规律,而且遵循万有引力定律.不仅利用布谷鸟巢穴间存在
                 的万有引力进行加速搜索,而且提出了一种概率变异的方法,增大了种群多样性,有效地平衡了算法的全局搜索能力
                 和局部开采能力,提高了算法的全局搜索效率和收敛精度.通过算法的数学机理分析和 26 个基准测试函数实验结果
                 表明,所提出的算法与其他改进智能优化算法比较,具有更优的性能.
                 关键词:  布谷鸟搜索算法;加速度;万有引力;发现概率
                 中图法分类号: TP18

                 中文引用格式:  傅文渊.具有万有引力加速机理的布谷鸟搜索算法.软件学报,2021,32(5):1480−1494.  http://www.jos.org.cn/
                 1000-9825/6056.htm
                 英文引用格式: Fu WY. Cuckoo  search algorithm  with  gravitational acceleration  mechanism. Ruan Jian Xue Bao/Journal of
                 Software, 2021,32(5):1480−1494 (in Chinese). http://www.jos.org.cn/1000-9825/6056.htm

                 Cuckoo Search Algorithm with Gravitational Acceleration Mechanism

                 FU Wen-Yuan 1,2,3
                 1 (College of Information Science and Engineering, Huaqiao Univesity, Xiamen 361021, China)
                 2 (Xiamen Key Laboratory of ASIC System (Huaqiao University), Xiamen 361008, China)
                 3 (Fujian Engineering Research Center of Motor Control and System Optimal Schedule, Xiamen 361002, China)
                 Abstract:    In this paper, a new cuckoo search algorithm with gravitational acceleration search mechanism is presented to address low
                 convergence rate and deteriorated search precision. The algorithm is fundamentally inspired by the fact that gravitational search can also
                 get the global optimal without perceiving the change on the driving effect of external environment. Each of the cuckoo nests exerted on
                 different quality not only follows the Levy flight law but also abides the law of universal gravitation during the process of optimization,
                 which accelerates the convergence significantly due to the intrinsic gravitational attraction between individuals within the cuckoo nests.
                 Furthermore, a  new  probability mutation approach  is formally  given to achieve a  balance between the  global  and  local search  for the
                 proposed algorithm. Consequently, the global convergence efficiency and search precision of the algorithm are significantly enhanced. Via
                 mathematical  analysis  and 26 benchmark test functions, the proposed  agorithm  is  competitive for the  convergence rate  and  search
                 precision in a comparison with other variants of intelligent optimization algorithm.
                 Key words:    cuckoo search algorithm; acceleration; gravitation; discovery probability


                   ∗  基金项目:  国家自然科学基金(61204122);  福建省中青年教师教育科研项目(JA15037);  福建省自然科学基金(2015J1263)
                      Foundation item: National Natural Science Foundation of China (61204122); Mid-Aged and Young Teachers Education Research
                 Project of Fujian Province (JA15037); Natural Science Foundation of Fujian Province (2015J1263)
                      收稿时间: 2018-07-02;  修改时间: 2019-09-26;  采用时间: 2020-02-04
   251   252   253   254   255   256   257   258   259   260   261