Page 253 - 《软件学报》2021年第5期
P. 253
曹翰林 等:轨迹表示学习技术研究进展 1477
[21] Yao D, Zhang C, Huang J, et al. SERM: A recurrent model for next location prediction in semantic trajectories. In: Proc. of the
2017 ACM on Conf. on Information and Knowledge Management. 2017. 2411−2414. [doi: 10.1145/3132847.3133056]
[22] Yu B, Kim SH, Bailey T, Gamboa R. Curve-based representation of moving object trajectories. In: Proc. of the Int’l Database
Engineering and Applications Symp. (IDEAS). 2004. 419−425. [doi: 10.1109/IDEAS.2004.1319817]
[23] Zheng Y, Liu L, Wang L, Xie X. Learning transportation mode from raw GPS data for geographic applications on the Web. 2008.
[doi: 10.1145/1367497.1367532]
[24] Zheng Y, Li Q, Chen Y, Xie X, Ma WY. Understanding mobility based on GPS data. 2008. [doi: 10.1145/1409635.1409677]
[25] Yao Z, Fu Y, Liu B, Hu W, Xiong H. Representing urban functions through zone embedding with human mobility patterns. In: Proc.
of the IJCAI Int’l Joint Conf. on Artificial Intelligence. 2018. 3919−3925. [doi: 10.24963/ijcai.2018/545]
[26] Sadeghian A, Kosaraju V, Sadeghian A, Hirose N, Rezatofighi SH, Savarese S. SoPhie: An attentive GAN for predicting paths
compliant to social and physical constraints. 2018. http://arxiv.org/abs/1806.01482
[27] Alahi A, Goel K, Ramanathan V, et al. Social LSTM: Human trajectory prediction in crowded spaces. In: Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition. 2016. 961−971. [doi: 10. 1109/ CVPR.2016.110]
[28] Gupta A, Johnson J, Li FF, Savarese S, Alahi A. Social GAN: Socially acceptable trajectories with generative adversarial networks.
In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2018. 2255−2264. [doi:
10.1109/CVPR.2018.00240]
[29] Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: Methods and applications. 2017. http://arxiv.org/abs/1709.
05584
[30] Cai H, Zheng VW, Chang KCC. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans.
on Knowledge and Data Engineering, 2018,30(9):1616−1637. [doi: 10.1109/TKDE.2018.2807452]
[31] Zhang C, et al. Regions, periods, activities: Uncovering urban dynamics via cross-modal representation learning. 2017. 361−370.
[doi: 10.1145/3038912.3052601]
[32] Wang G, Liao D, Li J. Complete user mobility via user and trajectory embeddings. IEEE Access, 2018. [doi: 10.1109/ACCESS.
2018.2881457]
[33] Wang H, Li Z. Region representation learning via mobility flow. In: Proc. of the Int’l Conf. on Information and Knowledge
Management. 2017. 237−246. [doi: 10.1145/3132847.3133006]
[34] Xie M, Yin H, Wang H, Xu F, Chen W, Wang S. Learning graph-based poi embedding for location-based recommendation. In:
Proc. of the Int’l Conf. on Information and Knowledge Management. 2016. 15−24. [doi: 10.1145/2983323.2983711]
[35] Lee JG, Han J, Li X, Cheng H. Mining discriminative patterns for classifying trajectories on road networks. IEEE Trans. on
Knowledge and Data Engineering, 2011,23(5):712−726. [doi: 10.1109/TKDE.2010.153]
[36] Liu Q, Wu S, Wang L, Tan T. Predicting the next location: A recurrent model with spatial and temporal contexts. In: Proc. of the
30th AAAI Conf. on Artificial Intelligence (AAAI 2016). 2016. 194−200.
[37] Sillito RR, Fisher RB. Parametric trajectory representations for behaviour classification. Multimedia Systems, 2006,12:227−238.
[doi: 10.5244/C.23.101]
[38] Li C, Han Z, Ye Q, et al. Visual abnormal behavior detection based on trajectory sparse reconstruction analysis. Neurocomputing,
2013,119:94−100. [doi: 10.1016/j.neucom.2012.03.040]
[39] Chen Z, Cai H, Zhang Y, et al. A novel sparse representation model for pedestrian abnormal trajectory understanding. Expert
Systems with Applications, 2019,138:Article No.112753. [doi: 10.1016/j.eswa.2019.06.041]
[40] Zhang L, Zhang G, Liang Z, et al. Multi-features taxi destination prediction with frequency domain processing. PloS one, 2018,
13(3):Article No.e0194629. [doi: 10.1371/journal.pone.0194629]
[41] Lv J, Li Q, Sun Q, Wang X. T-CONV: A convolutional neural network for multi-scale taxi trajectory prediction. In: Proc. of the
2018 IEEE Int’l Conf. on Big Data and Smart Computing (BigComp 2018). 2018. 82−89. [doi: 10.1109/BigComp.2018.00021]
[42] Wang L, Geng X, Ke J, et al. Ridesourcing car detection by transfer learning. arXiv preprint arXiv:1705.08409, 2017. [doi: 10.475/
123]
[43] Yang C, Gidófalvi G. Detecting regional dominant movement patterns in trajectory data with a convolutional neural network. Int’l
Journal of Geographical Information Science, 2020,34(5):996−1021. [doi: 10.1080/13658816.2019.1700510]
[44] Feng J, Li Y, Zhang C, et al. DeepMove: Predicting human mobility with attentional recurrent networks. In: Proc. of the 2018
World Wide Web Conf. 2018. 1459−1468.