Page 253 - 《软件学报》2021年第5期
P. 253

曹翰林  等:轨迹表示学习技术研究进展                                                             1477


                [21]    Yao D, Zhang C, Huang J, et al. SERM: A recurrent model for next location prediction in semantic trajectories. In: Proc. of the
                     2017 ACM on Conf. on Information and Knowledge Management. 2017. 2411−2414. [doi: 10.1145/3132847.3133056]
                [22]    Yu B, Kim  SH, Bailey T, Gamboa R. Curve-based  representation  of moving  object  trajectories.  In:  Proc.  of the  Int’l Database
                     Engineering and Applications Symp. (IDEAS). 2004. 419−425. [doi: 10.1109/IDEAS.2004.1319817]
                [23]    Zheng Y, Liu L, Wang L, Xie X. Learning transportation mode from raw GPS data for geographic applications on the Web. 2008.
                     [doi: 10.1145/1367497.1367532]
                [24]    Zheng Y, Li Q, Chen Y, Xie X, Ma WY. Understanding mobility based on GPS data. 2008. [doi: 10.1145/1409635.1409677]
                [25]    Yao Z, Fu Y, Liu B, Hu W, Xiong H. Representing urban functions through zone embedding with human mobility patterns. In: Proc.
                     of the IJCAI Int’l Joint Conf. on Artificial Intelligence. 2018. 3919−3925. [doi: 10.24963/ijcai.2018/545]
                [26]    Sadeghian A, Kosaraju  V, Sadeghian A,  Hirose  N,  Rezatofighi SH, Savarese S. SoPhie: An attentive  GAN  for predicting paths
                     compliant to social and physical constraints. 2018. http://arxiv.org/abs/1806.01482
                [27]    Alahi A, Goel K, Ramanathan V, et al. Social LSTM: Human trajectory prediction in crowded spaces. In: Proc. of the IEEE Conf.
                     on Computer Vision and Pattern Recognition. 2016. 961−971. [doi: 10. 1109/ CVPR.2016.110]
                [28]    Gupta A, Johnson J, Li FF, Savarese S, Alahi A. Social GAN: Socially acceptable trajectories with generative adversarial networks.
                     In: Proc.  of the IEEE  Computer Society  Conf. on  Computer  Vision  and Pattern  Recognition. 2018. 2255−2264. [doi:
                     10.1109/CVPR.2018.00240]
                [29]    Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: Methods and applications. 2017. http://arxiv.org/abs/1709.
                     05584
                [30]    Cai H, Zheng VW, Chang KCC. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans.
                     on Knowledge and Data Engineering, 2018,30(9):1616−1637. [doi: 10.1109/TKDE.2018.2807452]
                [31]    Zhang C, et al. Regions, periods, activities: Uncovering urban dynamics via cross-modal representation learning. 2017. 361−370.
                     [doi: 10.1145/3038912.3052601]
                [32]    Wang G, Liao D, Li J. Complete user mobility via user and trajectory embeddings. IEEE Access, 2018. [doi: 10.1109/ACCESS.
                     2018.2881457]
                [33]    Wang  H,  Li  Z. Region representation learning via  mobility flow. In: Proc. of  the Int’l  Conf. on Information  and  Knowledge
                     Management. 2017. 237−246. [doi: 10.1145/3132847.3133006]
                [34]    Xie M, Yin H, Wang H, Xu F, Chen W, Wang S. Learning graph-based poi embedding for location-based recommendation. In:
                     Proc. of the Int’l Conf. on Information and Knowledge Management. 2016. 15−24. [doi: 10.1145/2983323.2983711]
                [35]    Lee JG, Han J,  Li  X, Cheng  H.  Mining discriminative patterns for  classifying trajectories on road networks. IEEE Trans.  on
                     Knowledge and Data Engineering, 2011,23(5):712−726. [doi: 10.1109/TKDE.2010.153]
                [36]    Liu Q, Wu S, Wang L, Tan T. Predicting the next location: A recurrent model with spatial and temporal contexts. In: Proc. of the
                     30th AAAI Conf. on Artificial Intelligence (AAAI 2016). 2016. 194−200.
                [37]    Sillito RR, Fisher RB. Parametric trajectory representations for behaviour classification. Multimedia Systems, 2006,12:227−238.
                     [doi: 10.5244/C.23.101]
                [38]    Li C, Han Z, Ye Q, et al. Visual abnormal behavior detection based on trajectory sparse reconstruction analysis. Neurocomputing,
                     2013,119:94−100. [doi: 10.1016/j.neucom.2012.03.040]
                [39]    Chen Z, Cai H, Zhang  Y,  et  al.  A  novel sparse representation  model for pedestrian  abnormal trajectory understanding.  Expert
                     Systems with Applications, 2019,138:Article No.112753. [doi: 10.1016/j.eswa.2019.06.041]
                [40]    Zhang L, Zhang G, Liang Z, et al. Multi-features taxi destination prediction with frequency domain processing. PloS one, 2018,
                     13(3):Article No.e0194629. [doi: 10.1371/journal.pone.0194629]
                [41]    Lv J, Li Q, Sun Q, Wang X. T-CONV: A convolutional neural network for multi-scale taxi trajectory prediction. In: Proc. of the
                     2018 IEEE Int’l Conf. on Big Data and Smart Computing (BigComp 2018). 2018. 82−89. [doi: 10.1109/BigComp.2018.00021]
                [42]    Wang L, Geng X, Ke J, et al. Ridesourcing car detection by transfer learning. arXiv preprint arXiv:1705.08409, 2017. [doi: 10.475/
                     123]
                [43]    Yang C, Gidófalvi G. Detecting regional dominant movement patterns in trajectory data with a convolutional neural network. Int’l
                     Journal of Geographical Information Science, 2020,34(5):996−1021. [doi: 10.1080/13658816.2019.1700510]
                [44]    Feng J, Li Y,  Zhang  C,  et al.  DeepMove: Predicting  human  mobility  with  attentional  recurrent networks. In: Proc. of the 2018
                     World Wide Web Conf. 2018. 1459−1468.
   248   249   250   251   252   253   254   255   256   257   258