Page 255 - 《软件学报》2021年第5期
P. 255

曹翰林  等:轨迹表示学习技术研究进展                                                             1479


                [68]    Gruteser M, Liu X. Protecting privacy, in continuous location-tracking applications. IEEE Security & Privacy, 2004,2(2):28−34.
                [69]    Huo Z, Meng XF. A survey of trajectory privacy-preserving techniques. Chinese Journal of Computers, 2011,34(10):1820−1830 (in
                     Chinese with English abstract).
                [70]    Zheng C, Peng Q, Xu X. Heterogenous multi-source fusion for ship trajectory complement and prediction with sequence modeling.
                     In: Proc. of the IEEE 9th Int’l Conf. on Data Science in Cyberspace (DSC 2020). IEEE, 2020. 15−21. [doi: 10.1109/dsc50466.2020.
                     00011]
                [71]    Li X, Cong G, Cheng Y. Spatial transition learning on road networks with deep probabilistic models. In: Proc. of the 2020 IEEE
                     36th Int’l Conf. on Data Engineering (ICDE). 2020. 349−360.
                [72]    Liu X, Chen HZ, Andris C. trajGANs: Using generative adversarial networks for geo-privacy protection of trajectory data (Vision
                     paper). In: Proc. of the Location Privacy and Security Workshop. 2018. 1−7.
                [73]    Rao J, Gao S, Kang Y, Huang Q. LSTM-Trajgan: A deep learning approach to trajectory privacy protection. arXiv preprint arXiv:
                     2006.10521, 2020.
                [74]    Bengio S, Vinyals O, Jaitly N, Shazeer N. Scheduled sampling for sequence prediction with recurrent neural networks. 2015. http://
                     arxiv.org/abs/1506.03099
                [75]    Yao D, Zhang C, Huang JH, Chen YX, Bi JP. Semantic understanding of spatio-temporal data: Technology & application. Ruan
                     Jian  Xue  Bao/Journal of Software, 2018,29(7):2018−2045  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/
                     5576.htm [doi: 10.13328/j.cnki.jos.005576]
                [76]    Yin H, Zhou X, Cui B, Wang H, Zheng K, Nguyen QVH. Adapting to user interest drift for poi recommendation. IEEE Trans. on
                     Knowledge and Data Engineering, 2016,28(10):2566−2581.
                [77]    Yin H, Cui B, Zhou  X, Wang W, Huang Z,  Sadiq  S.  Joint modeling  of  user check-in  behaviors  for  real-time  point-of-interest
                     recommendation. ACM Trans. on Information Systems (TOIS), 2016,35(2):1−44.
                [78]    Liu X, Liu Y, Li X. Exploring the context of locations for personalized location recommendations. In: Proc. of the IJCAI. 2016.
                     1188−1194.
                [79]    Ying JJC, Lee WC, Weng TC, Tseng VS. Semantic trajectory mining for location prediction. In: Proc. of the 19th ACM Sigspatial
                     Int’l Conf. on Advances in Geographic Information Systems. 2011. 34−43.
                [80]    De Brébisson A, Simon É, Auvolat A, Vincent P, Bengio Y. Artificial neural networks applied to taxi destination prediction. arXiv
                     preprint arXiv:1508.00021, 2015.
                [81]    Clements M, Serdyukov P, De Vries AP, Reinders MJ. Using flickr geotags to predict user travel behaviour. In: Proc. of the 33rd
                     Int’l ACM Sigir Conf. on Research and Development in Information Retrieval. 2010. 851−852.
                [82]    Gao C, Zhang Z, Huang C, Yin H, Yang Q, Shao J. Semantic trajectory representation and retrieval via hierarchical embedding.
                     Information Sciences, 2020,538:176−192. [doi: https://doi.org/10.1016/j.ins.2020.05.107]

                 附中文参考文献:
                 [69]  霍峥,孟小峰.轨迹隐私保护技术研究.计算机学报,2011,34(10):1820−1830.
                 [75]  姚迪,张超,黄建辉,陈越新,毕经平.时空数据语义理解:技术与应用.软件学报,2018,29(7):2018−2045. http://www.jos.org.cn/1000-
                     9825/5576.htm [doi: 10.13328/j.cnki.jos.005576]


                              曹翰林(1996-),男,硕士生,主要研究领域                      王飞(1988-),男,博士,副教授,主要研究
                              为时空数据挖掘.                                     领域为分布式数据融合,时空序列挖掘.




                              唐海娜(1977-),女,博士,副教授,主要研                      徐勇军(1979-),男,博士,研究员,CCF 专
                              究领域为时空数据挖掘,社交网络分析.                           业会员,主要研究领域为人工智能系统,大
                                                                           数据分析.
   250   251   252   253   254   255   256   257   258   259   260