Page 255 - 《软件学报》2021年第5期
P. 255
曹翰林 等:轨迹表示学习技术研究进展 1479
[68] Gruteser M, Liu X. Protecting privacy, in continuous location-tracking applications. IEEE Security & Privacy, 2004,2(2):28−34.
[69] Huo Z, Meng XF. A survey of trajectory privacy-preserving techniques. Chinese Journal of Computers, 2011,34(10):1820−1830 (in
Chinese with English abstract).
[70] Zheng C, Peng Q, Xu X. Heterogenous multi-source fusion for ship trajectory complement and prediction with sequence modeling.
In: Proc. of the IEEE 9th Int’l Conf. on Data Science in Cyberspace (DSC 2020). IEEE, 2020. 15−21. [doi: 10.1109/dsc50466.2020.
00011]
[71] Li X, Cong G, Cheng Y. Spatial transition learning on road networks with deep probabilistic models. In: Proc. of the 2020 IEEE
36th Int’l Conf. on Data Engineering (ICDE). 2020. 349−360.
[72] Liu X, Chen HZ, Andris C. trajGANs: Using generative adversarial networks for geo-privacy protection of trajectory data (Vision
paper). In: Proc. of the Location Privacy and Security Workshop. 2018. 1−7.
[73] Rao J, Gao S, Kang Y, Huang Q. LSTM-Trajgan: A deep learning approach to trajectory privacy protection. arXiv preprint arXiv:
2006.10521, 2020.
[74] Bengio S, Vinyals O, Jaitly N, Shazeer N. Scheduled sampling for sequence prediction with recurrent neural networks. 2015. http://
arxiv.org/abs/1506.03099
[75] Yao D, Zhang C, Huang JH, Chen YX, Bi JP. Semantic understanding of spatio-temporal data: Technology & application. Ruan
Jian Xue Bao/Journal of Software, 2018,29(7):2018−2045 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/
5576.htm [doi: 10.13328/j.cnki.jos.005576]
[76] Yin H, Zhou X, Cui B, Wang H, Zheng K, Nguyen QVH. Adapting to user interest drift for poi recommendation. IEEE Trans. on
Knowledge and Data Engineering, 2016,28(10):2566−2581.
[77] Yin H, Cui B, Zhou X, Wang W, Huang Z, Sadiq S. Joint modeling of user check-in behaviors for real-time point-of-interest
recommendation. ACM Trans. on Information Systems (TOIS), 2016,35(2):1−44.
[78] Liu X, Liu Y, Li X. Exploring the context of locations for personalized location recommendations. In: Proc. of the IJCAI. 2016.
1188−1194.
[79] Ying JJC, Lee WC, Weng TC, Tseng VS. Semantic trajectory mining for location prediction. In: Proc. of the 19th ACM Sigspatial
Int’l Conf. on Advances in Geographic Information Systems. 2011. 34−43.
[80] De Brébisson A, Simon É, Auvolat A, Vincent P, Bengio Y. Artificial neural networks applied to taxi destination prediction. arXiv
preprint arXiv:1508.00021, 2015.
[81] Clements M, Serdyukov P, De Vries AP, Reinders MJ. Using flickr geotags to predict user travel behaviour. In: Proc. of the 33rd
Int’l ACM Sigir Conf. on Research and Development in Information Retrieval. 2010. 851−852.
[82] Gao C, Zhang Z, Huang C, Yin H, Yang Q, Shao J. Semantic trajectory representation and retrieval via hierarchical embedding.
Information Sciences, 2020,538:176−192. [doi: https://doi.org/10.1016/j.ins.2020.05.107]
附中文参考文献:
[69] 霍峥,孟小峰.轨迹隐私保护技术研究.计算机学报,2011,34(10):1820−1830.
[75] 姚迪,张超,黄建辉,陈越新,毕经平.时空数据语义理解:技术与应用.软件学报,2018,29(7):2018−2045. http://www.jos.org.cn/1000-
9825/5576.htm [doi: 10.13328/j.cnki.jos.005576]
曹翰林(1996-),男,硕士生,主要研究领域 王飞(1988-),男,博士,副教授,主要研究
为时空数据挖掘. 领域为分布式数据融合,时空序列挖掘.
唐海娜(1977-),女,博士,副教授,主要研 徐勇军(1979-),男,博士,研究员,CCF 专
究领域为时空数据挖掘,社交网络分析. 业会员,主要研究领域为人工智能系统,大
数据分析.