Page 254 - 《软件学报》2021年第5期
P. 254

1478                                     Journal of Software  软件学报 Vol.32, No.5,  May 2021

                [45]    Liang Y, Ke S, Zhang J, et al. Geoman: Multi-level attention networks for geo-sensory time series prediction. In: Proc. of the IJCAI.
                     2018. 3428−3434. [doi: 10.24963/ijcai.2018/476]
                [46]    Karatzoglou A, Schnell N, Beigl M. A convolutional neural network approach for modeling semantic trajectories and predicting
                     future locations. In: Proc. of the Int’l Conf. on Artificial Neural Networks. Cham: Springer-Verlag, 2018. 61−72. [doi: 10.1007/
                     978-3-030-01418-6_7]
                [47]    Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE Trans. on Pattern Analysis and
                     Machine Intelligence, 2013,35(8):1798−1828. [doi: 10.1109/TPAMI.2013.50]
                [48]    Mikolov T, Sutskever I, Chen K, et al. Distributed representations ofwords and phrases and their compositionality. arXiv preprint
                     arXiv:1310.4546, 2013.
                [49]    Banerjee P, Ranu S, Raghavan S. Inferring uncertain trajectories from partial observations. In: Proc. of the IEEE Int’l Conf. on
                     Data Mining. IEEE, 2014. 30−39. [doi: 10.1109/ICDM.2014.41]
                [50]    Wu  H,  Mao J, Sun W,  et  al. Probabilistic robust route  recovery  with spatio-temporal dynamics. In: Proc.  of the 22nd  ACM
                     SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2016. 1915−1924. [doi: 10.1145/2939672.2939843]
                [51]    Ranu S, Deepak P, Telang AD, et al. Indexing and matching trajectories under inconsistent sampling rates. In: Proc. of the IEEE
                     31st Int’l Conf. on Data Engineering. IEEE, 2015. 999−1010. [doi: 10.1109/ICDE.2015.7113351]
                [52]    Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.
                     3781, 2013.
                [53]    Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning. In: Proc. of the
                     48th Annual Meeting of the Association for Computational Linguistics. 2010. 384−394.
                [54]    Hinton GE. Learning distributed representations of concepts. In: Proc. of the Eighth Annual Conf. of the Cognitive Science Society.
                     1986. [doi: 10.1109/69.917563]
                [55]    Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. 2014. http://arxiv.org/abs/
                     1409.0473.
                [56]    Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. In: Proc. of the 1993 ACM
                     SIGMOD Int’l Conf. on Management of Data. 1993. 207−216.
                [57]    Keogh EJ, Pazzani MJ. Scaling up dynamic time warping for datamining applications. In: Proc. of the 6th ACM SIGKDD Int’l
                     Conf. on Knowledge Discovery and Data Mining. 2000. 285−289. [doi: 10.1145/347090.347153]
                [58]    Chen L, Ng R. On the marriage of Lp-norms and edit distance. In: Proc. of the 30th Int’l Conf. on Very Large Data Bases, Vol.30.
                     2004. 792−803.
                [59]    Chen L, Özsu MT, Oria V. Robust and fast similarity search for moving object trajectories. In: Proc. of the 2005 ACM SIGMOD
                     Int’l Conf. on Management of data. 2005. 491−502.
                [60]    Vlachos M, Kollios G,  Gunopulos  D.  Discovering similar  multidimensional trajectories.  In: Proc. of the Int’l  Conf. on  Data
                     Engineering. IEEE, 2002. 673−684. [doi: 10.1109/ICDE.2002.994784]
                [61]    Chen Z, Shen HT, Zhou X, et al. Searching trajectories by locations: An efficiency study. In: Proc. of the 2010 ACM SIGMOD
                     Int’l Conf. on Management of data. 2010. 255−266. [doi: 10.1145/1807167. 1807197]
                [62]    Hung CC, Peng WC, Lee WC. Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. The VLDB
                     Journal, 2015,24(2):169−192. [doi: 10.1007/s00778-011-0262-6]
                [63]    Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997,9(8):1735−1780. [doi: 10.1162/neco.1997.9.8.
                     1735]
                [64]    Chung J, Gulcehre  C, Cho  K,  Bengio  Y.  Empirical  evaluation of gated recurrent neural networks on sequence  modeling.  arXiv
                     preprint arXiv:1412.3555, 2014.
                [65]    Fraile R, Maybank SJ. Vehicle trajectory approximation and classification. In: Proc. of the BMVC. 1998. 832−840. [doi: 10.5244/c.
                     12.83]
                [66]    Gruteser M, Grunwald D. Anonymous usage of location-based services through spatial and temporal cloaking. In: Proc. of the 1st
                     Int’l Conf. on Mobile Systems, Applications and Services. 2003. 31−42. [doi: 10.1145/ 1066116.1189037]
                [67]    Terrovitis M, Mamoulis N. Privacy preservation in the publication of trajectories. In: Proc. of the 9th Int’l Conf. on Mobile Data
                     Management (MDM 2008). IEEE, 2008. 65−72. [doi: 10.1109/MDM.2008.29]
   249   250   251   252   253   254   255   256   257   258   259