Page 198 - 《软件学报》2021年第5期
P. 198
1422 Journal of Software 软件学报 Vol.32, No.5, May 2021
(3) 提供更高的准确性
构建公平且可靠的算法是可信机器学习算法的基础.
公平机器学习的第 5 个挑战是如何权衡算法性能与公平:当受保护属性与预测结果相关时,如累犯预测,很
难建立不包含与种族相关的分数,如果排除贫穷、失业和社会边缘化,准确率会下降.因此,我们需要进一步探索
权衡准确度和公平性的方式.
6 结 论
公平性是一种具有相对性的社会概念,绝对意义上的公平是不存在的.公平机器学习算法通过探索消除不
公平的机制,逐步完善机器学习算法的公平性.公平表征、公平建模和公平决策是可信机器学习公平性的 3 个
关键环节,有效定位并解决这 3 个环节的不公平问题,对未来公平机器学习算法的研究和发展具有重要意义.公
平具有在法律、社会层次的意义,不完全是一个技术问题,可信机器学习中的公平性研究可以认为是一个社会
学与计算机科学的交叉研究领域.在未来工作中,需要探究技术、应用和伦理等多方面的公平问题,部署先进的
公平机器学习算法于各应用领域,并形成统一且完整的公平性度量.
References:
[1] Zhou ZH. Machine Learning. Beijing: Tsinghua University Press, 2016 (in Chinese).
[2] He JF. Safe and trustworthy artificial intelligence. Information Security and Communications Privacy, 2019(10):5−8 (in Chinese).
[3] Meng XF, Wang LX, Liu JX. Data privacy, monopoly and fairness for AI. Big Data Research, 2020,6(1):35−46 (in Chinese with
English abstract).
[4] Liu RX, Chen H, Guo RY, Zhao D, Liang WJ, Li CP. Survey on privacy attacks and defenses in machine learning. Ruan Jian Xue
Bao/Journal of Software, 2020,31(3):866−892 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5904.htm [doi:
10.13328/j.cnki.jos.005904]
[5] Tan ZW, Zhang LF. Survey on privacy preserving techniques for machine learning. Ruan Jian Xue Bao/Journal of Software, 2020,
31(7):2127−2156 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6052.htm [doi: 10.13328/j.cnki.jos.006052]
[6] Cheng KY, Wang N, Shi WX, Zhan YZ. Research advances in the interpretability of deep learning. Journal of Computer Research
and Development, 2020,57(6):1208−1217 (in Chinese with English abstract).
[7] Saxena NA, Huang K, DeFilippis E, Radanovic G, Parkes DC, Liu Y. How do fairness definitions fare? Examining public attitudes
towards algorithmic definitions of fairness. In: Proc. of the AIES. 2019. 99−106.
[8] Kusner MJ, Loftus JR, Russell C, Silva R. Counterfactual fairness. In: Proc. of the NIPS. 2017. 4066−4076.
[9] Suresh H, Guttag JV. A framework for understanding unintended consequences of machine learning. arXiv preprint arXiv:1901.
10002v3, 2019.
[10] Mehrabi N, Morstatter F, Saxena N, Lerman K, Aram G. A survey on bias and fairness in machine learning. arXiv preprint
arXiv:1908.09635v2, 2019.
[11] Baeza-Yates R. Bias on the Web. Communications of the ACM, 2018,61(6):54−61.
[12] Silva S, Kenney M. Algorithms, platforms, and ethnic bias. Communications of the ACM, 2019,62(11):37−39.
[13] Alessandro BD, Neil CO, LaGatta T. Conscientious classification: A data scientist’s guide to discrimination-aware classification.
arXiv preprint arXiv:1907.09013v1, 2019.
[14] Chouldechova A, Roth A. The frontiers of fairness in machine learning. arXiv preprint arXiv:1810.08810v1, 2018.
[15] Hardt M, Price E, Srebro N. Equality of opportunity in supervised learning. In: Proc. of the NIPS. 2016. 3315−3323.
[16] Chen IY, Johansson FD, Sontag DA. Why is my classifier discriminatory? In: Proc. of the NeurIPS. 2018. 3543−3554.
[17] Buolamwini J, Gebru T. Gender shades: Intersectional accuracy disparities in commercial gender classification. In: Proc. of the
FAT. 2018. 77−91.
[18] Dwork C, Hardt M, Pitassi T, Reingold O, Zemel RS. Fairness through awareness. In: Proc. of the ITCS. 2012. 214−226.
[19] Friedler SA, Scheidegger C, Venkatasubramanian S, Choudhary S, Hamilton EP, Roth D. A comparative study of fairness-
enhancing interventions in machine learning. In: Proc. of the FAT. 2019. 329−338.