Page 200 - 《软件学报》2021年第5期
P. 200
1424 Journal of Software 软件学报 Vol.32, No.5, May 2021
[48] Agarwal A, Dudík M, Wu ZWS. Fair regression: Quantitative definitions and reduction-based algorithms. In: Proc. of the ICML.
2019. 120−129.
[49] Conitzer V, Freeman R, Shah N, Vaughan JW. Group fairness for the allocation of indivisible goods. In: Proc. of the AAAI. 2019.
1853−1860.
[50] Kusner MJ, Russell C, Loftus JR, Silva R. Making decisions that reduce discriminatory impacts. In: Proc. of the ICML. 2019.
3591−3600.
[51] Ustun B, Liu Y, Parkes DC. Fairness without harm: Decoupled classifiers with preference guarantees. In: Proc. of the ICML. 2019.
6373−6382.
[52] Tsang A, Wilder B, Rice E, Tambe M, Zick Y. Group-fairness in influence maximization. In: Proc. of the IJCAI. 2019. 5997−6005.
[53] Chen XY, Fain B, Lyu L, Munagala K. Proportionally fair clustering. In: Proc. of the ICML. 2019. 1032−1041.
[54] Jiang R, Pacchiano A, Stepleton T, Jiang H, Chiappa S. Wasserstein fair classification. In: Proc. of the UAI. 2019. 862−872.
[55] Jagielski M, Kearns MJ, Mao JM, Oprea A, Roth A, Sharifi-Malvajerdi S, Ullman J. Differentially private fair learning. In: Proc. of
the ICML. 2019. 3000−3008.
[56] Wang TL, Zhao JY, Yatskar M, Chang KW, Ordonez V. Balanced datasets are not enough: Estimating and mitigating gender bias
in deep image representations. In: Proc. of the ICCV. 2019. 5309−5318.
[57] Quadrianto N, Sharmanska V, Thomas O. Discovering fair representations in the data domain. In: Proc. of the CVPR. 2019.
8227−8236.
[58] DeVries T, Misra I, Wang CH, Maaten LVD. Does object recognition work for everyone? In: Proc. of the CVPR Workshops. 2019.
52−59.
[59] Wang ZY, Qinami K, Karakozis IC, Genova K, Nair P, Hata K, Russakovsky O. Towards fairness in visual recognition: Effective
strategies for bias mitigation. In: Proc. of the CVPR. 2020. 8916−8925.
[60] Reid P, Martinez RD, Dass N, Kurohashi S, Jurafsky D, Yang DY. Automatically neutralizing subjective bias in text. In: Proc. of
the AAAI. 2020. 480−489.
[61] Bolukbasi T, Chang KW, Zou JY, Saligrama V, Kalai AT. Man is to computer programmer as woman is to homemaker? Debiasing
word embeddings. In: Proc. of the NIPS. 2016. 4349−4357.
[62] Zhao JY, Wang TL, Yatskar M, Ordonez V, Chang KW. Men also like shopping: reducing gender bias amplification using corpus-
level constraints. In: Proc. of the EMNLP. 2017. 2979−2989.
[63] Zhao JY, Wang TL, Yatskar M, Ordonez V, Chang KW. Gender bias in coreference resolution: Evaluation and debiasing methods.
In: Proc. of the NAACL-HLT, Vol.2. 2018. 15−20.
[64] Stanovsky G, Smith NA, Zettlemoyer L. Evaluating gender bias in machine translation. In: Proc. of the ACL. 2019. 1679−1684.
[65] Du YP, Wu YB, Lan M. Exploring human gender stereotypes with word association test. In: Proc. of the EMNLP/IJCNLP. 2019.
6132−6142.
[66] Papakyriakopoulos O, Hegelich S, Serrano JCM, Marco F. Bias in word embeddings. In: Proc. of the FAT*. 2020. 446−457.
[67] Ma PC, Wang S, Liu J. Metamorphic testing and certified mitigation of fairness violations in NLP models. In: Proc. of the IJCAI.
2020. 458−465.
[68] Badilla P, Marquez FB, Pérez J. WEFE: The word embeddings fairness evaluation framework. In: Proc. of the IJCAI. 2020.
430−436.
[69] Yadav H, Du ZX, Joachims T. Fair learning-to-rank from implicit feedback. arXiv preprint arXiv:1911.08054v1, 2019.
[70] Beutel A, Chen JL, Doshi T, Qian H, Wei L, Wu Y, Heldt L, Zhao Z, Hong LC, Chi EH, Goodrow C. Fairness in recommendation
ranking through pairwise comparisons. In: Proc. of the KDD. 2019. 2212−2220.
[71] Singh A, Joachims T. Policy learning for fairness in ranking. In: Proc. of the NeurIPS. 2019. 5427−5437.
[72] Patro GK, Biswas A, Ganguly N, Gummadi KP, Chakraborty A. FairRec: Two-sided fairness for personalized recommendations in
two-sided platforms. In: Proc. of the WWW. 2020. 1194−1204.
[73] Patro GK, Chakraborty A, Ganguly N, Gummadi KP. Fair updates in two-sided market platforms: On incrementally updating
recommendations. In: Proc. of the AAAI. 2020. 181−188.