Page 174 - 《软件学报》2020年第11期
P. 174
3490 Journal of Software 软件学报 Vol.31, No.11, November 2020
现方法由于难以获取其全局结构,无法有效处理这些动态的大型复杂网络.因此,近些年,局部社区发现算法引
起了广大学者的关注.针对复杂社会网络中个体间的相似关系是模糊的或不确定的,本文提出一种基于模糊相
似关系的局部社区发现方法.首先,采用模糊关系来刻画一条边的两个节点之间的相似关系.然后证明了该模糊
关系为模糊相似关系,将某一节点所在的社区转化为节点关于模糊相似关系 q 水平上的等价类,通过寻找最大
连通子图方法得到某一节点所在的局部社区.与其他算法相比,本文算法在仿真网络数据集和真实网络数据集
上都取得了良好的效果.此外,还观察了参数 q 的变化对本文算法的影响,给参数设置提供了依据.
为了适应社会媒体和社交网络快速发展的需要,我们下一步的工作将针对动态的、异构的、内容与链接结
合的复杂大型真实社会网络,设计出快速、高准确度和无监督的局部社区发现算法.
References:
[1] Zhao S, Liu XM, Duan Z, Zhang YP, Tang J. A survey on social ties mining. Chinese Journal of Computers, 2017,40(3):535−555
(in Chinese with English abstract).
[2] Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Sciences of the
United States of America, 2002,99(12):7821−7826.
[3] Qiao SJ, Han N, Zhang KF, Zou L,Wang HZ, Gutierrez LA. Algorithm for detecting overlapping communities from complex
network big data. Ruan Jian Xue Bao/Journal of Software, 2017,28(3):631−647 (in Chinese with English abstract). http://www.jos.
org.cn/1000-9825/5155.htm [doi: 10.13328/j.cnki.jos.005155]
[4] Cheng XQ, Shen HW. Community structure of complex networks. Complex Systems and Complexity Science, 2011,8(1):57−70 (in
Chinese with English abstract).
[5] Liu DY, Jin D, He DX, Huang J, Yang JN, Yang B. Community mining in complex networks. Journal of Computer Research and
Development, 2013,50(10):2140−2154 (in Chinese with English abstract).
[6] Fortunato S, Hric D. Community detection in networks: A user guide. Physics Reports, 2016,659:1−44.
[7] Zhang ZH, Miao DQ, Qian J. Detecting overlapping communities with heuristic expansion method based on rough neighborhood.
Chinese Journal of Computers, 2013,36(10):2078−2086 (in Chinese with English abstract).
[8] Li LQ, Gui XL, An J, Sun Y. Overlapping community detection algorithm based on fuzzy hierarchical clustering in social network.
Journal of Xi’an Jiaotong University, 2015,49(2):6−13 (in Chinese with English abstract).
[9] Song L, Xie G, Yang YY. Community partition algorithm based on fuzzy clustering. Computer Engineering, 2016,42(8):126−133
(in Chinese with English abstract).
[10] Zhang YL, Wu B, Liu Y. A novel community detection method based on rough set K-means. Journal of Electronics and
Information Technology, 2017,39(4):770−777 (in Chinese with English abstract).
[11] Wang XF, Liu GS, Li JH. A detecting community method in complex networks with fuzzy clustering. In: Proc. of the Int’l Conf. on
Data Science and Advanced Analytics. 2014. 484−490.
[12] Sun PG, Gao L, Han SS. Identification of overlapping and non-overlapping community structure by fuzzy clustering in complex
networks. Information Sciences, 2011,181(6):1060−1071.
[13] Liu Q, Peng ZM, Gao Y, Liu Q. A new K-means algorithm for community structures detection based on fuzzy clustering. In: Proc.
of the IEEE Int’l Conf. on Granular Computing. 2012. 1−5.
[14] Zhao YL, Nie LQ, Wang XY, Chua TS. Personalized recommendations of locally interesting venues to tourists via cross-region
community matching. ACM Trans. on Intelligent Systems & Technology, 2014,5(3):1−26.
[15] Liu Y, Ji XS, Liu CX. Detecting local community structure based on the identification of boundary nodes in complex networks.
Journal of Electronics and Information Technology, 2014,36(12):2809−2815 (in Chinese with English abstract).
[16] Clauset A. Finding local community structure in networks. Physical Review E, 2005,72(2):Article No.026132.
[17] Luo F, Wang JZ, Promislow E. Exploring local community structures in large networks. Web Intelligence and Agent Systems, 2008,
6(4):387−400.
[18] Huang JB, Sun HL, Liu YG, Song QB, Weninger T. Towards online multiresolution community detection in large-scale networks.
Plos One, 2011,6(8):Article No.e23829.