Page 98 - 摩擦学学报2025年第5期
P. 98

732                                    摩擦学学报(中英文)                                        第 45 卷

            黏附性能,将各种黏合基材在人造海水中放置12 h进                          [  8  ]   Waite J H, Tanzer M L. Polyphenolic substance of mytilus edulis:
            行黏附测试,如图7(c)和(d)所示,在钢片、钛片、铝片、                          novel  adhesive  containing  L-dopa  and  hydroxyproline[J].  Science,
                                                                   1981, 212(4498): 1038–1040. doi: 10.1126/science.212.4498.1038.
            铜片、黄铜、PET、PI、碳纤维、PMMA、PC和PVC上
                                                               [  9  ]   Hofman  A  H,  van  Hees  I  A,  Yang  Juan,  et  al.  Bioinspired
            的黏附强度分别为615.8、562.1、613.1、449.8、673.2、
                                                                   underwater  adhesives  by  using  the  supramolecular  toolbox[J].
            176.9、166.7、726.1、303.5、417.6和 561.5 kPa. 整体看
                                                                   Advanced  Materials,  2018,  30(19):  e1704640.  doi:  10.1002/adma.
            来,黏附强度受海水环境的变化影响较小,这可能与                                201704640.
                                          [29]
            PDMS分子链的耐海水侵蚀性有关 . 该结果表明 P3                        [10]   Peng Xianyu, Ma Chuandong, Ji Jiaxin, et al. Underwater adhesion
            胶黏剂在实际应用环境中具有良好的稳定性,这一特                                mechanisms  and  biomimetic  study  of  marine  life[J].  Tribology,
                                                                   2020, 40(6): 816–830 (in Chinese) [彭宪宇, 马传栋, 纪佳馨, 等. 海
            性对于其用于水下工程作业具有积极意义.

                                                                   洋生物水下粘附机理及仿生研究[J]. 摩擦学学报, 2020, 40(6):
                                                                   816–830]. doi: 10.16078/j.tribology.2020028.
            3    结论
                                                               [11]   Maier G P, Rapp M V, Waite J H, et al. Adaptive synergy between
                a. 本文中报道了1种新型策略,以水为触发开关,                           catechol  and  lysine  promotes  wet  adhesion  by  surface  salt
            通过金刚烷和β-环糊精的主客体作用在水下自适应组                               displacement[J]. Science, 2015, 349(6248): 628–632. doi: 10.1126/
            装形成稳定的包合物实现高强度水下黏附.                                    science.aab0556.
                b. 该胶黏剂可以在多种水环境(超纯水、酸和碱                        [12]   Priemel T, Palia G, Förste F, et al. Microfluidic-like fabrication of
                                                                   metal  ion-cured  bioadhesives  by  mussels[J].  Science,  2021,
            溶液、海水)中直接作业,并对多种基材表现出强大的
                                                                   374(6564): 206–211. doi: 10.1126/science.abi9702.
            黏合性,且随时间延长黏附强度没有明显降低. 另外,
                                                               [13]   Wang Zhao, Wan Xizi, Wang Shutao. Bioinspired chemical design
            该胶黏剂表现出可循环使用性,有助于减轻对海洋生                                to control interfacial wet adhesion[J]. Chem, 2023, 9(4): 771–783.
            态系统和环境的负担.                                             doi: 10.1016/j.chempr.2023.02.012.
                                                               [14]   Zhang  Chao,  Wu  Baiheng,  Zhou  Yongsen,  et  al.  Mussel-inspired
            参 考 文 献
                                                                   hydrogels:  from  design  principles  to  promising  applications[J].
            [  1  ]   Shirmohammadli  Y,  Pizzi  A,  Raftery  G  M,  et  al.  One-component  Chemical Society Reviews, 2020, 49(11): 3605–3637. doi: 10.1039/
                 polyurethane  adhesives  in  timber  engineering  applications:  a  C9CS00849G.
                 review[J].  International  Journal  of  Adhesion  and  Adhesives,  2023,  [15]   Chen  Jingsi,  Peng  Qiongyao,  Liu  Jifang,  et  al.  Mussel-inspired
                 123: 103358. doi: 10.1016/j.ijadhadh.2023.103358.  cation-π  interactions:  wet  adhesion  and  biomimetic  materials[J].
            [  2  ]   Ma Yufeng, Kou Zhimin, Hu Yun, et al. Research advances in bio-  Langmuir: the ACS Journal of Surfaces and Colloids, 2023, 39(49):
                 based  adhesives[J].  International  Journal  of  Adhesion  and  17600–17610. doi: 10.1021/acs.langmuir.3c02818.
                 Adhesives,  2023,  126:  103444.  doi:  10.1016/j.ijadhadh.2023.  [16]   Chen  Jingsi,  Zeng  Hongbo.  Designing  bio-inspired  wet  adhesives
                 103444.                                           through  tunable  molecular  interactions[J].  Journal  of  Colloid  and
            [  3  ]   Montazerian  H,  Davoodi  E,  Baidya  A,  et  al.  Bio-macromolecular  Interface Science, 2023, 645: 591–606. doi: 10.1016/j.jcis.2023.04.
                 design  roadmap  towards  tough  bioadhesives[J].  Chemical  Society  150.
                 Reviews, 2022, 51(21): 9127–9173. doi: 10.1039/d2cs00618a.  [17]   Narayanan A, Dhinojwala A, Joy A. Design principles for creating
            [  4  ]   Heinzmann C, Weder C, de Espinosa L M. Supramolecular polymer  synthetic underwater adhesives[J]. Chemical Society Reviews, 2021,
                 adhesives:  advanced  materials  inspired  by  nature[J].  Chemical  50(23): 13321–13345. doi: 10.1039/d1cs00316j.
                 Society Reviews, 2016, 45(2): 342–358. doi: 10.1039/c5cs00477b.  [18]   Narayanan  A,  Menefee  J  R,  Liu  Qianhui,  et  al.  Lower  critical
            [  5  ]   Cui  Chunyan,  Liu  Wenguang.  Recent  advances  in  wet  adhesives:  solution temperature-driven self-coacervation of nonionic polyester
                 adhesion mechanism, design principle and applications[J]. Progress  underwater adhesives[J]. ACS Nano, 2020, 14(7): 8359–8367. doi:
                 in  Polymer  Science,  2021,  116:  101388.  doi:  10.1016/j.  10.1021/acsnano.0c02396.
                 progpolymsci.2021.101388.                     [19]   Seo S, Das S, Zalicki P J, et al. Microphase behavior and enhanced
            [  6  ]   Fan  Hailong,  Gong  Jianping.  Bioinspired  underwater  adhesives[J].  wet-cohesion  of  synthetic  copolyampholytes  inspired  by  a  mussel
                 Advanced  Materials,  2021,  33(44):  2102983.  doi:  10.1002/adma.  foot  protein[J].  Journal  of  the  American  Chemical  Society,  2015,
                 202102983.                                        137(29): 9214–9217. doi: 10.1021/jacs.5b03827.
            [  7  ]   Cai  Chao,  Chen  Zhen,  Chen  Yujie,  et  al.  Mechanisms  and  [20]   Sha  Xinyi,  Zhang  Changxu,  Qi  Meiwei,  et  al.  Mussel-inspired
                 applications of bioinspired underwater/wet adhesives[J]. Journal of  alternating copolymer as a high-performance adhesive material both
                 Polymer  Science,  2021,  59(23):  2911–2945.  doi:  10.1002/pol.  at  dry  and  under-seawater  conditions[J].  Macromolecular  Rapid
                 20210521.                                         Communications,  2020,  41(10):  e2000055.  doi:  10.1002/marc.
   93   94   95   96   97   98   99   100   101   102   103