Page 70 - 摩擦学学报2025年第4期
P. 70
558 摩擦学学报(中英文) 第 45 卷
distributed between 0.4 and 0.44, with certain fluctuation. 40 and 80 cyclic experiments resulted in similar wear surface
morphology of the pin, with a large number of plow grooves, craters, fragmentation of reinforcing components, oxide
adhesion, and edge spalling phenomena. The thickness and continuity of the friction layer on the wear surface of the
pins (braking pads) increased with the growing number of cycles, and after 80 cycles, there were uneven thicknesses of
friction layers enriched with Cu and Cr, bar attachments along the frictional sliding direction, and a large number of
furrows on the ring surface. The 350 km/h condition of the braking pads was mainly characterized by abrasive and
adhesive wear, and the reinforcing elements were fragmented and detached under cyclic shear and compressive stresses,
especially the reinforcing elements immediately adjacent to the graphite elements. A large number of abrasive particles
existed between the friction interfaces, resulting in severe abrasive wear. The abrasive particles may detach from the
friction interface, be stored in the low-lying areas on the surface of the braking pads, or be compacted into a friction
layer. The friction layer on the surface experienced a process of removal and generation under shear, plowing of the
abrasive chips, and adhesion of the friction pair. The use of small-scale (laboratory-level) equipment and the adoption of
certain experimental parameter selection principles could make the experimental results comparable with those of the 1:1
braking test bench. The average frictional dissipation energy of the braking pads at the speed level of 350 km/h was
3
0.113 cm /MJ, which was close to that of the 1:1 braking test bench provided by the iron academy of science with the
3
test result of 0.14 cm /MJ. The wear life of the braking pads was 192 times, which corresponded to 341 times of
emergency braking under the actual working condition of 350 km/h speed. The results of this paper could provide a
reference for the improvement of the safety of the braking system and the development of new material systems for
high-speed railroads from the point of view of tribological research.
Key words: wear lifetime; friction and wear; brake pad; wear mechanism; material tribology
作为高速铁路发展的核心技术之一,制动系统直 试验参数选择原则,对燕尾I-C型闸片不同累计循环
接影响着高速列车的运行安全性、稳定性和舒适性 [1-2] . 试验次数(服役周期)下摩擦磨损行为特征和磨损寿命
随着我国高速列车向更高速化、安全化、智慧化、经 进行了深入研究. 此外,为了详细表征闸片中各组元
济化和舒适化等目标发展,对高速列车盘式制动系 的损伤机制,开展了半原位磨损试验. 本文中的研究
统,尤其是作为易损件、必备件的闸片材料的摩擦系 结果可从摩擦学研究的角度,为高速铁路制动系统安
数稳定性、摩擦行为的可预测性及服役寿命等构成了 全性的提高和新材料体系的开发提供参考.
[3]
严峻的挑战 .
目前,研究者对不同工况参数下闸片的基本摩擦 1 试验材料与方法
磨损规律进行了深入探索,得到了大量具有参考性的 1.1 试验材料
结果. 例如,制动速度主要影响摩擦界面温度、微凸体 本文中的试验材料分别为中国铁道科学研究院
所受冲击力的大小以及摩擦膜的形成和附着 [4-7] ,温度 提供的在役(商业)闸片和制动盘加工而来. 其中闸片
主要影响闸片氧化行为、闸片基体力学性能的衰退和 为铜基粉末冶金材料(燕尾I-C型),制动盘为铸钢,制
润滑组元的失效等 [8-10] ,从而在不同方面影响闸片的 动盘的成分(质量分数,w)列于表1中. 铜基粉末冶金
制动行为. 此外,对于闸片材料,已经形成了较为成熟 材料闸片主要由铜合金基体添加一定的润滑组元和
的性能优化途径,例如,对非金属组元进行表面包覆 增强组元等组成,由于个别组元尺寸较大,形状不规
金属处理改善其与基体之间润湿性 [11-14] ,闸片基体合 则且分布均匀性的限制,难以对闸片成分做精确的表
金化来提高闸片的强度和硬度等 [15-16] . 然而,值得注意 征. 为此,对闸片材料在40倍数下进行了10次能谱分
的是研究者较少关注材料在同一试验条件下的摩擦 析,对每一次的检测结果中各元素含量取平均值并计
磨损行为演变,或对闸片材料不同寿命周期下的摩擦 算误差,来提升结果的可信程度,检测结果列于表2
3
磨损行为及服役寿命预测计算较少. 此外研究者更多 中. 闸片的密度为5.41 g/cm ,剪切强度为22 MPa,硬
关注摩擦副的磨损机制,对闸片中各组元的损伤行为 度为18 HBW,制动盘硬度为42 HRC.
分析不够深入,试验结果的参考价值存在一定的限制. 1.2 试验方法
鉴于以上研究背景,本研究中从能量耗散的角度 1.2.1 试验设备
出发,使用高速销-环式摩擦磨损试验机代替1:1制动 为了评价闸片在350 km/h速度水平下的摩擦磨损
台架试验设备,在350 km/h的速度水平下基于特定的 行为和磨损寿命,针对在役燕尾I-C型闸片(刹车片)和