Page 38 - 摩擦学学报2025年第4期
P. 38
526 摩擦学学报(中英文) 第 45 卷
density design of aircraft gear transmission. The model investigated the flow field and temperature field where the
velocity of the gear reached up to 160 m/s. It comprised modules for analyzing the lubrication flow field of gear oil spray
and calculating the temperature field of the gear. The Dynamic Mesh method with Global Remeshing approach was used
to simulate the rotation of gears in the flow field, and the RNG k −ε model with higher accuracy was employed to
analyze turbulence for high rotational flow. The standard wall functions were used to analyze the distribution of oil on
the gear surface. Stability checks and mesh independence checks were conducted to confirm the reliability of the results.
The flow field analysis module provided parameters such as the gear tooth surface oil volume fraction, wall heat transfer
coefficient, and windage loss. The comprehensive viscosity was employed to correlate gear lubrication with gear oil-air
ratio, combined with meshing loss of spiral bevel gears under oil jet conditions to compute frictional heat flow at
different linear velocities. Considering multiple heat sources such as heating from windage and meshing heat generation,
and multiple heat dissipation channels including convective heat transfer and thermal conduction, the temperature
distribution of the gear was determined. By comparing the differences in aerodynamic drag loss calculations between
NASA experiments, empirical formulas, and the model, the accuracy of the model was validated. The model analysis
revealed that as the gear velocity increased from 40 m/s to 160 m/s, the jet breakup offset phenomenon intensified,
leading to an 83.5% decrease in the average oil-air ratio on the gear surface. The lubricating oil significantly affected
convective heat transfer on the gear surface, with a sharp increase in the wall heat transfer coefficient at the gear oil jet
location. As the velocity increased, the rising trend of convective wall transfer coefficient in the meshing zone shifted to
a decreasing trend after 120 m/s, indicating deteriorating lubrication heat transfer conditions. With the increase in
velocity, windage loss exhibited a nearly exponential growth pattern. The windage loss accounts for over 80% of the
total loss at 160 m/s, becoming the primary source of loss at high gear speeds and resulting in reduced transmission
efficiency.
Key words: high linevelocity; spiral bevel gear; oil spray lubrication; thermal-fluid coupling; windage loss
[12]
弧齿锥齿轮由于其高承载特性和传动稳定性,常 滑过程中的流场分布;Hildebrand等 以FZG齿轮箱
用于航空发动机和直升机等高端装备的机械传动系 为对象,研究了飞溅润滑条件下导流罩对流场的影
统,在高速重载条件下承担功率提取、输送和分配的 响,得到油流被搅动加速是搅油空载损失的成因. 一
关键功能. 航空弧齿锥齿轮常采用喷油润滑,但由于 些研究中 [13-14] 针对喷油润滑利用Fluent中多相流模
其常工作于转速超10 000 r/min和接触压力超1 GPa的 型(VOF)模型,研究了喷油参数的影响,得到其对齿轮
[15]
高速重载工况,致使齿轮胶合、点蚀等失效风险加剧, 润滑的影响规律. Hashimoto等 对航空GTF行星齿轮
影响装备服役安全 [1-3] . 传统齿轮喷油润滑设计一般采 传动系统利用FLOW-3D研究了2种不同结构的回流
[6]
用Anderson-Loewenthal [4-5] 、Niemann 等经验公式计 罩流场和油流分布,得到导流罩与齿轮径向距离是导
[5]
算出齿轮生热量,继而估算出所需供油量. 但其并未 致差异的原因. Lu等 利用多重参考系(MRF)模型对
考虑齿轮转速、喷油速度和喷油角度等实际润滑条件 直升机中间齿轮箱搅油润滑进行分析,得到流场分布
对润滑效果影响. 特别是高速情况下齿轮喷油润滑规 并为系统热分析提供边界. 除了采用CFD方法研究齿
律不明,喷油射流无法有效润滑齿轮导致齿轮出现乏 轮润滑效果外,试验也被利用于研究齿轮润滑流场.
油,从而出现异常的温升和失效 [7-8] . 近年来出现的流 一些研究中 [16-17] 利用试验台对喷油参数的影响规律进
场-温度场耦合分析方法可以考虑流场润滑对齿轮温 行了分析,得出喷油压力越高齿轮温度越低,润滑效
度场的影响,使得齿轮高速情况下流场和温度场的揭 果越好. 然而目前所研究的齿轮润滑线速度都较低且
示更加充分直观,为航空弧齿锥齿轮传动提供设计依据. 研究对象大都是圆柱齿轮,由于圆柱齿轮和弧齿锥齿
[4]
目前,基于计算流体力学(CFD)的数值分析方法 轮在几何上存在显著差异将导致不同流场分布规律 ,
是获取齿轮箱内部流场分布和演变规律的主要方法 对高线速度情况下的弧齿锥齿轮喷油润滑研究不足,
[9]
之一 . Liu等 [10-11] 利用CFD技术对FZG齿轮箱润滑流 影响了齿轮高功率密度和高可靠性设计.
场进行分析,并利用高速相机拍摄的流场分布进行验 齿轮运行中产生的风阻损失将降低传动系统的
证,拍摄的流场与CFD方法分析得到的流场高度吻 效率,增加燃油消耗,同时风阻损失产生的热量将造
合,说明利用CFD技术可以低成本便捷的得到齿轮润 成传动系统的温升,影响传动系统的热平衡 [18-19] . 一些